版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省瓮安第二中学2025年高二数学第一学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-72.已知椭圆C:的左、右焦点分别为F1,F2,过点F1作直线l交椭圆C于M,N两点,则的周长为()A.3 B.4C.6 D.83.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里4.已知数列的通项公式为,且数列是递增数列,则实数的取值范围是()A. B.C. D.5.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.6.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为()A. B.C. D.7.已知函数的导函数为,且满足,则()A. B.C. D.8.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.9.在中,内角所对的边为,若,,,则()A. B.C. D.10.用数学归纳法证明“”时,由假设证明时,不等式左边需增加的项数为()A. B.C. D.11.如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A. B.C. D.12.七巧板是中国古代劳动人民发明的一种传统智力玩具,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中随机地取一点,则该点恰好取自白色部分的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为___________.14.已知点,平面过原点,且垂直于向量,则点到平面的距离是_________.15.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____16.设正项等比数列的公比为,前项和为,若,则_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)18.(12分)已知函数(其中a常数)(1)求的单调递增区间;(2)若,时,的最小值为4,求a的值19.(12分)在二项式展开式中,第3项和第4项的二项式系数比为.(1)求n的值及展开式中的常数项;(2)求展开式中系数最大的项是第几项.20.(12分)已知(1)求的最小正周期及单调递增区间;(2)已知钝角内角A,B,C的对边长分别a,b,c,若,,.求a的值21.(12分)已知函数.(1)求函数在处的切线方程;(2)设为的导数,若方程的两根为,且,当时,不等式对任意的恒成立,求正实数的最小值.22.(10分)如图,在正四棱锥中,为底面中心,,为中点,(1)求证:平面;(2)求:(ⅰ)直线到平面的距离;(ⅱ)求直线与平面所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A2、D【解析】由的周长为,结合椭圆的定义,即可求解.【详解】由题意,椭圆,可得,即,如图所示,根据椭圆的定义,可得的周长为故选:D.3、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.4、C【解析】利用递增数列的定义即可.【详解】由,∴,即是小于2n+1的最小值,∴,故选:C5、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C6、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.7、C【解析】求出导数后,把x=e代入,即可求解.【详解】因为,所以,解得故选:C8、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.9、B【解析】利用正弦定理角化边得到,再利用余弦定理构造方程求得结果.【详解】,,由余弦定理得:,,.故选:B.10、C【解析】当成立,写出左侧的表达式,当时,写出对应的关系式,观察计算即可【详解】从到成立时,左边增加的项为,因此增加的项数是,故选:C11、B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.12、A【解析】设七巧板正方形边长为4,求出阴影部分的面积,再利用几何概型概率公式计算作答.【详解】设七巧板正方形边长为4,则大阴影等腰三角形底边长为4,底边上的高为2,可得小正方形对角线长为2,小正方形边长为,小阴影等腰直角三角形腰长为,小白色等腰直角三角形底边长为2,则左上角阴影等腰直角三角形腰长为2,因此,图中阴影部分面积,而七巧板正方形面积,于是得七巧板中白色部分面积为,所以在此正方形中随机地取一点,则该点恰好取自白色部分的概率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设点,根据抛物线的定义表示出,将用表示,并逐步转化为一个基本不等式形式,从而求出取最小值时的点的坐标,再根据双曲线的定义及离心率的公式求值.【详解】由题意可得,,,抛物线的准线为,设点,根据对称性,不妨设,由抛物线的定义可知,又,所以,当且仅当时,等号成立,此时,设以为焦点的双曲线方程为,则,即,又,,所以离心率.故答案为:.【点睛】关键点点睛:本题的关键是将的坐标表达式逐渐转化为一个可以用基本不等式求最值的式子,从而找出取最小值时的点的坐标.14、【解析】确定,,利用点到平面的距离为,即可求得结论.【详解】由题意,,,设与的夹角为,则所以点到平面的距离为故答案为:15、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:16、【解析】由可知公比,所以直接利用等比数列前项和公式化简,即可求出【详解】解:因为,所以,所以,所以,化简得,因为等比数列的各项为正数,所以,所以,故答案为:【点睛】此题考查等比数列前项和公式的应用,考查计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,,,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;18、(1);(2).【解析】(1)利用三角恒等变换思想化简函数解析式为,然后解不等式,可得答案;(2)由计算出的取值范围,利用正弦函数的基本性质可求得函数的最小值,进而可求得实数的值.【详解】(1),令,解得.所以,函数的单调递增区间为;(2)当时,,所以,所以,解得.19、(1),常数项为(2)5【解析】(1)求出二项式的通项公式,求出第3项和第4项的二项式系数,再利用已知条件列方程求出的值,从而可求出常数项,(2)设展开式中系数最大的项是第项,则,从而可求出结果【小问1详解】二项式展开式的通项公式为,因为第3项和第4项的二项式系数比为,所以,化简得,解得,所以,令,得,所以常数项为【小问2详解】设展开式中系数最大的项是第项,则,,解得,因为,所以,所以展开式中系数最大的项是第5项20、(1),;(2)2.【解析】(1)利用三角恒等变换公式化简函数,再利用三角函数性质计算作答.(2)由(1)的结论及已知求出角C,再利用余弦定理计算判断作答.【小问1详解】依题意,,则的最小正周期,由,解得,则在上单调递增,所以的最小正周期为,递增区间为.【小问2详解】由(1)知,,即,在中,,,则,即,,于是得,解得,在中,由余弦定理得:,即,解得或,当时,,为直角三角形,与是钝角三角形矛盾,当时,,,此时,是钝角三角形,则,所以a的值是2.21、(1)(2)1【解析】(1)先求导数,根据导数的几何意义可求得切线方程;(2)将已知方程结合其两根,进行变式,求得,利用该式再将不等式变形,然后将不等式的恒成立问题变为函数的最值问题求解.【小问1详解】由题意可得,所以切点为,则切线方程为:.【小问2详解】由题意有:,则,因为分别是方程的两个根,即.两式相减,则,则不等式,可变为,两边同时除以得,,令,则在上恒成立.整理可得,在上恒成立,令,则,①当,即时,在上恒成立,则在上单调递增,又,则在上恒成立;②当,即时,当时,,则在上单调递减,则,不符合题意.综上:,所以的最小值为1.22、(1)证明见解析;(2)(i);(ii).【解析】(1)连接,以点为坐标原点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聊天主播合同范本
- 职工灶安全协议书
- 联合培训合同范本
- 联盟与工会协议书
- 联通宽带合同范本
- 聘用试用合同范本
- 自愿购买书协议书
- 金融转让协议书
- 个人装卸协议书
- 2025年黑龙江省公需课学习-绿色信贷政策与实施案例150
- 2026年采购部年度工作计划及管理方案
- 餐饮原材料合同范本
- 2025年沈阳华晨专用车有限公司公开招聘考试笔试参考题库及答案解析
- 足浴店加盟店合同范本2025年版合同
- 北京朝阳区六里屯街道办事处招聘18名城市协管员考试笔试备考题库及答案解析
- 哈尔滨铁路局2012年515火灾死亡事故86课件
- 《乡土中国》读书分享读书感悟读后感图文课件
- 高位截瘫患者的麻醉演示文稿
- ICU抗生素使用课件
- 【语文】高考60篇古诗文全项训练宝典
- 《糖尿病教学查房》课件
评论
0/150
提交评论