江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题含解析_第1页
江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题含解析_第2页
江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题含解析_第3页
江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题含解析_第4页
江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省陆慕高级中学2026届高一上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“是第一象限角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知,为锐角,,,则的值为()A. B.C. D.3.设,则a,b,c的大小关系为()A. B.C. D.4.已知,若,则x的取值范围为()A. B.C. D.5.设为大于1的正数,且,则,,中最小的是A. B.C. D.三个数相等6.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x7.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.68.已知是上的偶函数,在上单调递增,且,则下列不等式成立的是()A. B.C. D.9.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.66110.若函数(,且)在上的最大值为4,且函数在上是减函数,则实数的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图象经过点,则________12.已知函数(且)的图象过定点,则点的坐标为______13.已知函数,,则________14.若函数(,且)在上是减函数,则实数的取值范围是__________.15.已知函数的图象(且)恒过定点P,则点P的坐标是______,函数的单调递增区间是__________.16.函数的单调递增区间为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围18.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围19.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.20.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.21.在中,,且与的夹角为,.(1)求的值;(2)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据充分、必要条件的定义,结合角的概念,即可得答案.【详解】若是第一象限角,则,无法得到一定属于,充分性不成立,若,则一定第一象限角,必要性成立,所以“是第一象限角”是“”的必要不充分条件.故选:B2、A【解析】,根据正弦的差角公式展开计算即可.【详解】∵,,∴,又∵,∴,又,∴,∴,,∴故选:A.3、D【解析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D4、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.5、C【解析】令,则,所以,,对以上三式两边同时乘方,则,,,显然最小,故选C.6、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D7、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A8、B【解析】根据函数的奇偶性和函数的单调性判断函数值的大小即可.【详解】因为是上的偶函数,在上单调递增,所以在上单调递减,.又因为,因为,在上单调递减,所以,即.故选:B.9、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A10、A【解析】由函数(,且)在上的最大值为4,分情况讨论得到,从而可得函数单调递增,而在上是减函数,所以可得,由此可求得的取值范围【详解】当时,函数单调递增,据此可知:,满足题意;当时,函数单调递减,据此可知:,不合题意;故,函数单调递增,若函数在上是减函数,则,据此可得故选:A【点睛】此题考查对数函数的性质,考查指数函数的性质,考查分类讨论思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:12、【解析】令,结合对数的运算即可得出结果.【详解】令,得,又因此,定点的坐标为故答案为:13、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.14、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:15、①.②.【解析】令,求得,即可得到函数的图象恒过定点;令,求得函数的定义域为,利用二次函数的性质,结合复合函数的单调性的判定方法,即可求解.【详解】由题意,函数(且),令,即,可得,即函数的图象恒过定点,令,即,解得,即函数的定义域为,又由函数的图象开口向下,对称轴的方程为,所以函数在上单调递增,在上单调递减,结合复合函数的单调性的判定方法,可得函数的递增区间为.故答案为:;.16、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.【小问1详解】∵的定义域为,∴∴,则【小问2详解】令,,使得成立,即大于在上的最小值∵,∴在上的最小值为,∴实数的取值范围是18、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的,恒成立求解.19、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,,又因为,所以平面,由题意,易知,,所以四边形是平行四边形,故,所以平面;(2)因为平面,所以与平面所成的角为,由已知条件,可知,,所以是正三角形,所以,所以与平面所成的角为30°;(3)假设线段上是存在点,使得平面,过点作交于,连结,,如下图:所以,所以,,,四点共面,又因平面,所以,所以四边形为平行四边形,故,所以为中点,故在线段上存在点,使得平面,且.20、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:21、(1);(2).【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论