河北省沧州市肃宁一中2026届数学高二上期末预测试题含解析_第1页
河北省沧州市肃宁一中2026届数学高二上期末预测试题含解析_第2页
河北省沧州市肃宁一中2026届数学高二上期末预测试题含解析_第3页
河北省沧州市肃宁一中2026届数学高二上期末预测试题含解析_第4页
河北省沧州市肃宁一中2026届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省沧州市肃宁一中2026届数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.瑞士著名数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,这条直线被后人称为三角形的“欧拉线”.若满足,顶点,且其“欧拉线”与圆相切,则:①.圆M上的点到原点的最大距离为②.圆M上存在三个点到直线的距离为③.若点在圆M上,则的最小值是④.若圆M与圆有公共点,则上述结论中正确的有()个A.1 B.2C.3 D.42.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.3.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.4.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.45.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.126.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.7.已知圆的方程为,直线:恒过定点,若一条光线从点射出,经直线上一点反射后到达圆上的一点,则的最小值是()A.3 B.4C.5 D.68.原点到直线的距离的最大值为()A. B.C. D.9.某程序框图如图所示,该程序运行后输出的值是()A. B.C. D.10.若直线的方向向量为,平面的法向量为,则()A. B.C. D.与相交但不垂直11.若正方体ABCD­A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1 B.C. D.12.正方体的表面积为,则正方体外接球的表面积为(

)A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.圆心在x轴上且过点的一个圆的标准方程可以是______14.若“”是“”必要不充分条件,则实数的最大值为_______15.已知数列的前n项和为,且满足通项公式,则________16.如图,已知与所在平面垂直,且,,,点P、Q分别在线段BD、CD上,沿直线PQ将向上翻折,使D与A重合.则直线AP与平面ACQ所成角的正弦值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.18.(12分)如图,在四棱锥中中,平面ABCD,底面ABCD是边长为2的正方形,.(1)求证:平面;(2)求二面角的平面角的余弦值.19.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.20.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.21.(12分)等差数列{an}的前n项和记为Sn,且.(1)求数列{an}的通项公式an(2)记数列的前n项和为Tn,若,求n的最小值.22.(10分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意求出的垂直平分线可得△的欧拉线,再由圆心到直线的距离求得,得到圆的方程,求出圆心到原点的距离,加上半径判断A;求出圆心到直线的距离判断B;再由的几何意义,即圆上的点与定点连线的斜率判断C;由两个圆有公共点可得圆心距与两个半径之间的关系,求得的取值范围判断D【详解】由题意,△的欧拉线即的垂直平分线,,,的中点坐标为,,则的垂直平分线方程为,即由“欧拉线”与圆相切,到直线的距离,,则圆的方程为:,圆心到原点的距离为,则圆上的点到原点的最大距离为,故①错误;圆心到直线的距离为,圆上存在三个点到直线的距离为,故②正确;的几何意义:圆上的点与定点连线的斜率,设过与圆相切的直线方程为,即,由,解得,的最小值是,故③错误;的圆心坐标,半径为,圆的的圆心坐标为,半径为,要使圆与圆有公共点,则圆心距的范围为,,,解得,故④错误故选:A2、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D3、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.4、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B5、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C6、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A7、B【解析】求得定点,然后得到关于直线对称点为,然后可得,计算即可.【详解】直线可化为,令解得所以点的坐标为.设点关于直线的对称点为,则由,解得,所以点坐标为.由线段垂直平分线的性质可知,,所以(当且仅当,,,四点共线时等号成立),所以的最小值为4.故选:B.8、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.9、B【解析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0),判断为否,进入循环结构,1),判断为否,进入循环结构,2),判断为否,进入循环结构,3),判断为否,进入循环结构,……9),判断为否,进入循环结构,10),判断为是,故输出,故选:B.【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.10、B【解析】通过判断直线的方向向量与平面的法向量的关系,可得结论【详解】因为,,所以,所以∥,因为直线的方向向量为,平面的法向量为,所以,故选:B11、B【解析】先证明点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离,再建立空间直角坐标系,利用向量法求解.【详解】因为平面平面,所以A1C1//平面ACD1,则点A1到平面ACD1的距离即为直线A1C1到平面ACD1的距离.建立如图所示的空间直角坐标系,易知=(0,0,1),由题得平面,所以平面,所以,同理,因为平面,所以平面,所以是平面一个法向量,所以平面ACD1的一个法向量为=(1,1,1),故所求的距离为.故选:B【点睛】方法点睛:求点到平面的距离常用的方法有:(1)几何法(找作证指求);(2)向量法;(3)等体积法.要根据已知条件灵活选择方法求解.12、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】确定x轴上一个点做圆心,求出半径,再写出圆的标准方程即可.【详解】以x轴上的点为圆心,则半径,所以圆的标准方程为:.故答案为:14、【解析】设的解集为集合,由题意可得是的真子集,即可求解.【详解】由得或,因为“”是“”的必要不充分条件,设或,,因为“”是“”的必要不充分条件,所以是的真子集,所以故答案为:【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含15、【解析】由时,,可得,利用累乘法得,从而即可求解.【详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.16、##【解析】取的中点,的中点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,设,根据求出,再由空间向量的数量积即可求解.【详解】取的中点,的中点,如图以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,不妨设,则,,,由,即,解得,所以,故,设为平面ACQ的一个法向量,因为,,由,即,所以,设直线AP与平面ACQ所成角为,则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用抛物线点,n)到焦点的距离等于到x轴的距离求出,从而得到抛物线的标准方程(2)联立直线与抛物线方程,通过韦达定理求出直线方程,然后由,即可求解【小问1详解】由题意可得,故抛物线方程为;【小问2详解】设,,,,直线的方程为,联立方程中,消去得,,则,又,解得或(舍去),直线方程为,直线过定点18、(1)证明见解析(2)【解析】(1)根据平面得到,结合得到证明。(2)建立空间直角坐标系,计算各点坐标,计算平面的法向量,根据向量的夹角公式得到答案。【小问1详解】由于平面,平面,所以,由于,又,所以平面【小问2详解】两两垂直,建立如图所示空间直角坐标系,,,,,,设平面的一个法向量为设平面的一个法向量为,由,得,故可取所以所以二面角的平面角的余弦值19、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.20、(1)(2)(3)分【解析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.21、(1)an=2n(2)100【解析】(1)由等差数列的通项公式列出方程组求解即可;(2)由裂项相消求和法得出,再由不等式的性质得出n的最小值.【小问1详解】设等差数列{an}的公差为d,依题意有解得,所以an=2n.【小问2详解】由(1)得,则,所以因为,即,解得n>99,所以n的最小值为100.22、(1);(2)证明见解析;(3).【解析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论