宁夏回族自治区六盘山高级中学 2026届高二上数学期末质量检测模拟试题含解析_第1页
宁夏回族自治区六盘山高级中学 2026届高二上数学期末质量检测模拟试题含解析_第2页
宁夏回族自治区六盘山高级中学 2026届高二上数学期末质量检测模拟试题含解析_第3页
宁夏回族自治区六盘山高级中学 2026届高二上数学期末质量检测模拟试题含解析_第4页
宁夏回族自治区六盘山高级中学 2026届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏回族自治区六盘山高级中学2026届高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为()A.0.72 B.0.26C.0.7 D.0.982.已知数列满足且,则()A.是等差数列 B.是等比数列C.是等比数列 D.是等比数列3.已知双曲线:()的离心率为,则的渐近线方程为()A. B.C. D.4.已知是抛物线上的点,F是抛物线C的焦点,若,则()A1011 B.2020C.2021 D.20225.已知双曲线的左、右焦点分别为,,P为双曲线C上一点,,直线与y轴交于点Q,若,则双曲线C的渐近线方程为()A. B.C. D.6.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.7.已知1与5的等差中项是,又1,,,8成等比数列,公比为,则的值为()A.5 B.4C.3 D.68.已知函数,当时,函数在,上均为增函数,则的取值范围是A. B.C. D.9.元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填()A. B.C. D.10.在平行六面体中,,,,则()A. B.5C. D.311.函数单调减区间是()A. B.C.和 D.12.与空间向量共线的一个向量的坐标是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,,使得成立,则实数a的取值范围是___________.14.不等式的解集是___________.15.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________16.已知空间向量,,若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点为抛物线的焦点,点在抛物线上,的面积为1.(1)求抛物线的标准方程;(2)设点是抛物线上异于点的一点,直线与直线交于点,过作轴的垂线交抛物线于点,求证:直线过定点.18.(12分)已知椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若斜率为1的直线与椭圆交于不同的两点,,求的最大值.19.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.20.(12分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由21.(12分)已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程22.(10分)等差数列的前n项和为,已知(1)求的通项公式;(2)若,求n的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用对立事件的概率求法求飞行目标被雷达发现的概率.【详解】由题设,飞行目标不被甲、乙发现的概率分别为、,所以飞行目标被雷达发现的概率为.故选:D2、D【解析】由,化简得,结合等比数列、等差数列的定义可求解.【详解】由,可得,所以,又由,,所以是首项为,公比为2的等比数列,所以,,,,所以不是等差数列;不等于常数,所以不是等比数列.故选:D.3、A【解析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果【详解】∵双曲线的离心率,∴又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为故选:A4、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C5、B【解析】由题意可设且,即得a、b的数量关系,进而求双曲线C的渐近线方程.【详解】由题设,,,又,P为双曲线C上一点,∴,又,为的中点,∴,即,∴双曲线C的渐近线方程为.故选:B.6、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.7、A【解析】由等差中项的概念列式求得值,再由等比数列的通项公式列式求解,则答案可求.【详解】由题意,,则;又1,,,8成等比数列,公比为,,即,,故选:.8、A【解析】由,函数在上均为增函数,恒成立,,设,则,又设,则满足线性约束条件,画出可行域如图所示,由图象可知在点取最大值为,在点取最小值.则的取值范围是,故答案选A考点:利用导数研究函数的性质,简单的线性规划9、D【解析】根据程序框图的算法功能,模拟程序运行即可推理判断作答.【详解】由程序框图知,直到型循环结构,先执行循环体,条件不满足,继续执行循环体,条件满足跳出循环体,则有:当第一次执行循环体时,,,条件不满足,继续执行循环体;当第二次执行循环体时,,,条件不满足,继续执行循环体;当第三次执行循环体时,,,条件不满足,继续执行循环体;当第四次执行循环体时,,,条件不满足,继续执行循环体;当第五次执行循环体时,,,条件满足,跳出循环体,输出,于是得判断框中的条件为:,所以判断框中可以填:.故选:D10、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.11、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B12、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.14、##【解析】将分式不等式等价转化为不等式组,求解即得.【详解】原不等式等价于,解得,故答案为:.15、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.16、2【解析】依据向量垂直充要条件列方程,解之即可解决.【详解】空间向量,,由,可知,即,解之得故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由条件列方程求,由此可得抛物线方程;(2)方法一:联立直线与抛物线方程,结合条件三点共线,可证明直线过定点,方法二:联立直线与抛物线方程,联立直线与直线求,由垂直与轴列方程化简,可证明直线过定点.【小问1详解】因为点在抛物线上,所以,即,,因为,故解得,抛物线的标准方程为【小问2详解】设直线的方程为,由,得,所以,由(1)可知当时,,此时直线的方程为,若时,因为三点共线,所以,即,又因为,,化简可得,又,进而可得,整理得,因为所以,此时直线的方程为,直线恒过定点又直线也过点,综上:直线过定点解法二:设方程,得若直线斜率存在时斜率方程为即解得:,于是有整理得.(*)代入上式可得所以直线方程为直线过定点.若直线斜率不存在时,直线方程为所以P点坐标为,M点坐标为此时直线方程为过点综上:直线过定点.【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题18、(1);(2).【解析】(1)由题设可得且,结合椭圆参数关系求,即可得椭圆的方程;(2)设直线为,联立抛物线整理成一元二次方程的形式,由求m的范围,再应用韦达定理及弦长公式求关于m的表达式,根据二次函数性质求最值即可.小问1详解】由题设,且,故,,则,所以椭圆的方程为.【小问2详解】设直线为,联立椭圆并整理得:,所以,可得,且,,所以且,故当时,.19、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.20、(1);(2)是定值,理由见解析.【解析】(1)由题意有,点与椭圆的左、右顶点可以构成等腰直角三角形有,即可写出椭圆方程;(2)直线与椭圆交于两点,联立方程结合韦达定理即有,已知应用点线距离公式、三角形面积公式即可说明的面积是否为定值;【详解】(1)椭圆离心率为,即,∵点与椭圆的左、右顶点可以构成等腰直角三角形,∴,综上有:,,故椭圆方程为,(2)由直线与椭圆交于两点,联立方程:,整理得,设,则,,,,原点到的距离,为定值;【点睛】本题考查了由离心率求椭圆方程,根据直线与椭圆的相交关系证明交点与原点构成的三角形面积是否为定值的问题.21、(1)或(2)或【解析】(1)设圆心的坐标为,则该圆的半径长为,利用点到直线的距离公式可求得的值,即可得出圆的标准方程;(2)利用勾股定理可求得圆心到的距离,分析可知直线的斜率存在,设直线的方程为,利用点到直线的距离公式可求得关于的方程,解出的值,即可得出直线的方程.【小问1详解】解:设圆心的坐标为,则该圆的半径长为,因为圆心到直线的距离为,解得,所以圆心的坐标为或,半径为,因此,圆的标准方程为或.【小问2详解】解:若圆的圆心在第一象限,则圆的标准方程为.因为,所以圆心到直线的距离.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论