内蒙古自治区包头市二中2026届高一上数学期末调研试题含解析_第1页
内蒙古自治区包头市二中2026届高一上数学期末调研试题含解析_第2页
内蒙古自治区包头市二中2026届高一上数学期末调研试题含解析_第3页
内蒙古自治区包头市二中2026届高一上数学期末调研试题含解析_第4页
内蒙古自治区包头市二中2026届高一上数学期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区包头市二中2026届高一上数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若:,则成立的一个充分不必要条件是()A. B.C. D.2.函数的零点所在区间是A. B.C. D.3.已知唯一的零点在区间、、内,那么下面命题错误的A.函数在或,内有零点B.函数在内无零点C.函数在内有零点D.函数在内不一定有零点4.已知直线ax+by+c=0的图象如图,则()A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>05.已知实数x,y满足,那么的最大值为()A. B.C.1 D.26.是上的奇函数,满足,当时,,则()A. B.C. D.7.如图所示的程序框图中,输入,则输出的结果是A.1 B.2C.3 D.48.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.89.下列说法不正确的是A.方程有实根函数有零点B.有两个不同的实根C.函数在上满足,则在内有零点D.单调函数若有零点,至多有一个10.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad12.在平面直角坐标系中,已知为坐标原点,,,,若动点,则的最大值为______.13.设函数的定义域为,若函数满足条件:存在,使在上的值域是,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是_______14.已知,,,则___________.15.在空间直角坐标系中,点和之间的距离为____________.16.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其图像过点,相邻两条对称轴之间的距离为(1)求函数的解析式;(2)将函数的图像上每一点的横坐标伸长到原来的2倍,纵坐标保持不变,得到函数的图像,若方程在上有两个不相等的实数解,求实数m的取值范围18.已知函数(其中,,)图象上两相邻最高点之间距离为,且点是该函数图象上的一个最高点(1)求函数的解析式;(2)把函数的图象向右平移个单位长度,得到函数的图象,若恒有,求实数的最小值.19.已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长20.已知全集,函数的定义域为集合,集合(1)若求:(2)设;.若是的充分不必要条件,求实数的取值范围.21.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.2、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.3、C【解析】利用零点所在的区间之间的关系,将唯一的零点所在的区间确定出,则其他区间就不会存在零点,进行选项的正误筛选【详解】解:由题意,唯一的零点在区间、、内,可知该函数的唯一零点在区间内,在其他区间不会存在零点.故、选项正确,函数的零点可能在区间内,也可能在内,故项不一定正确,函数的零点可能在区间内,也可能在内,故函数在内不一定有零点,项正确故选:【点睛】本题考查函数零点的概念,考查函数零点的确定区间,考查命题正误的判定.注意到命题说法的等价说法在判断中的作用4、D【解析】由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0;故选D.5、C【解析】根据重要不等式即可求最值,注意等号成立条件.【详解】由,可得,当且仅当或时等号成立.故选:C.6、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.7、B【解析】输入x=2后,该程序框图的执行过程是:输入x=2,x=2>1成立,y==2,输出y=2选B.8、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B9、C【解析】A选项,根据函数零点定义进行判断;B选项,由根的判别式进行求解;C选项,由零点存在性定理及举出反例进行说明;D选项,由函数单调性定义及零点存在性定理进行判断.【详解】A.根据函数零点的定义可知:方程有实根⇔函数有零点,∴A正确B.方程对应判别式,∴有两个不同实根,∴B正确C.根据根的存在性定理可知,函数必须是连续函数,否则不一定成立,比如函数,满足条件,但在内没有零点,∴C错误D.若函数为单调函数,则根据函数单调性的定义和函数零点的定义可知,函数和x轴至多有一个交点,∴单调函数若有零点,则至多有一个,∴D正确故选:C10、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:12、【解析】设动点,由题意得动点轨迹方程为则由其几何意义得表示圆上的点到的距离,故点睛:本题主要考查了平面向量的线性运算及其运用,综合了圆上点与定点之间的距离最大值,先给出动点的轨迹方程,再表示出向量的坐标结果,依据其几何意义计算求得结果,本题方法不唯一,还可以直接计算含有三角函数的最值13、【解析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【详解】因为函数为“倍缩函数”,即满足存在,使在上的值域是,由复合函数单调性可知函数在上是增函数所以,则,即所以方程有两个不等实根,且两根都大于0.令,则,所以方程变为:.则,解得所以实数的取值范围是.故答案为:14、【解析】由已知条件结合所给角的范围求出、,再将展开即可求解【详解】因为,所以,又因为,所以,所以,因为,,所以,因为,所以,所以,故答案为:.【点睛】关键点点睛:本题解题的关键点是由已知角的三角函数值的符号确定角的范围进而可求角的正弦或余弦,将所求的角用已知角表示即.15、【解析】利用空间两点间的距离公式求解.【详解】由空间直角坐标系中两点间距离公式可得.故答案为:16、【解析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据给定条件依次计算出,即可作答.(2)由(1)求出函数的解析式,再探讨在上的性质,结合图象即可作答.【小问1详解】因图像的相邻两条对称轴之间的距离为,则周期,解得,又,即,而,即,则,即,所以函数的解析式.【小问2详解】依题意,,当时,,而函数在上递增,在上递减,由得,由得,因此,函数在上单调递增,函数值从增到2,在上单调递减,函数值从2减到1,又是图象的一条对称轴,直线与函数在上的图象有两个公共点,当且仅当,如图,于是得方程在上有两个不相等的实数解时,当且仅当,所以实数m的取值范围.18、(1)(2)最小值为4【解析】(1)由图象上两相邻最高点之间的距离为,可知周期,点是该函数图象上的一个最高点,可知,故,将点代入解析式即可得,函数解析式即可求得;(2)利用函数平移的性质即可求得平移后的函数,由恒有,可知函数在处取得最大值,即可求出实数取最小值.【小问1详解】根据题意得函数的周期为,即,故,∵点是该函数图象上的一个最高点,∴,即,将点代入函数解析式得,,即,则,又∵,∴,故.【小问2详解】∵函数,∴∵恒有成立,∴在处取得最大值,则,,得∵,,故当时,实数取最小值4.19、(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线距离,由弦长公式即可得出答案.【详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即∴,解得∴直线的方程为∴直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为∴弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.20、(1);(2)或.【解析】(1)分别求解集合,再求补集和交集即可;(2)由,根据条件得是的真子集,进而得或.【详解】(1)由得,解得,所以,当时,,所以.(2),因为是的充分不必要条件,所以是的真子集,所以或,解得或21、(1);(2);(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论