版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年中考第一次模拟考试数学(考试时间:100分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的绝对值是()A.3 B.﹣3 C.3或﹣3 D.或2.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358×105 B.35.8×103 C.3.58×105 D.3.58×1043.图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()A. B. C. D.4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20° B.25° C.30° D.35°5.下列运算正确的是()A.a2•a3=a4 B.(ab3)2=a2b3 C.(2a﹣b)2=4a2﹣2ab+b2 D.=|a|6.如图,点A、B、P在⊙O上,若∠AOB=80°,则∠APB的度数为()A.70° B.60° C.50° D.40°7.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()A. B. C. D.8.人类的性别是由一对性染色体(X,Y)决定,当染色体为XX时,是女性;当染色体为XY时,是男性.如图为一对夫妻的性染色体遗传图谱,如果这位女士怀上了一个小孩,该小孩为女孩的概率是()A. B. C. D.9.一元二次方程x2+x=0的根的情况为()A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根10.如图所示,边长为2的等边△ABC是三棱镜的一个横截面.一束光线ME沿着与AB边垂直的方向射入到BC边上的点D处(点D与B,C不重合),反射光线沿DF的方向射出去,DK与BC垂直,且入射光线和反射光线使∠MDK=∠FDK.设BE的长为x,△DFC的面积为y,则下列图象中能大致表示y与x的函数关系的()A. B. C. D.第Ⅱ卷二.填空题(共5小题,满分15分,每小题3分)11.要使有意义,则x的取值范围是.12.不等式组的解集是.13.某运动队要从甲、乙、丙、丁四名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到表:甲乙丙丁平均数(cm)176173175176方差10.510.532.742.1根据表中数据,教练组应该选择参加比赛(填“甲”或“乙”或“丙”或“丁”).14.如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.15.已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②tan∠PEF=;③S△EPF的最小值为;④S四边形AEPF=1.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有.三.解答题(共8小题,满分75分)16.(10分)(1)计算:;(2)化简:.17.(9分)某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新冠病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:858095100909585657585909070901008080909575乙小区:806080956510090858580957580907080957510090整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25ab乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=,b=,c=,d=;(2)若甲小区共有600人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由(至少写出一条).18.(9分)如图,在直角坐标平面内,函数y=(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)求反比例函数的解析式;(2)若△ABD的面积为4,求点B的坐标;(3)求证:DC∥AB.19.(9分)如图,A处有一垂直于地面的标杆AM,热气球沿着与AM的夹角为15°的方向升空,到达B处,这时在A处的正东方向200米的C处测得B的仰角为30°(AM、B、C在同一平面内).求A、B之间的距离.(结果精确到1米,≈1.414)20.(9分)夏季即将来临,空调的销售逐渐火起来,某商行去年7月份销售某品牌A型号空调总额为32万元,由于原材料涨价,今年该型号空调销售单价比去年提高了400元.若今年7月份与去年7月份该型号空调销售量相同,则今年7月份该型号空调的销售总额将增加25%.该品牌A,B两种型号空调的进货和销售价格表如下:A型号B型号进货价格(元/台)11001400销售价格(元/台)今年的销售价格2400(1)求今年7月份该品牌A型号空调的销售单价;(2)商行准备购入该品牌A型号空调和B型号空调共400台,且B型号空调进货数量不超过A型号空调数量的2倍,应如何进货才能使这批空调获利最多?21.(9分)如图,AB为⊙O的直径,C、E为⊙O上的两点,过点E的切线交CB的延长线于点D,且CD⊥DE,连接CE,AE.(1)求证:∠ABC=2∠A;(2)若⊙O半径为,AB:BD=5:1,求AE的长.22.(10分)如图,抛物线y=ax2+bx+4与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)点P为抛物线位于第一象限上一个动点,过点P作PD⊥x轴于点D,交直线BC于点Q,求线段PQ的最大值;(3)点M(﹣2,8),N(3,8),将抛物线向上平移m个单位,若平移后的抛物线与线段MN只有一个公共点,直接写出m的取值范围.23.(10分)综合与实践【问题情境】在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.【操作发现】(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,请你判断四边形ACGC′的形状,并证明你的结论.【实践探究】(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.2024年中考第一次模拟考试数学·全解全析第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.﹣3的绝对值是()A.3 B.﹣3 C.3或﹣3 D.或【分析】根据负数的绝对值等于它的相反数即可求解.【解答】解:∵|﹣3|=3,∴﹣3的绝对值是3.故选:A.2.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358×105 B.35.8×103 C.3.58×105 D.3.58×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:35800=3.58×104.故选:D.3.图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是()A. B. C. D.【分析】根据主视图是从几何体的正面观察得到的视图进行判断即可.【解答】解:领奖台从正面看,是由三个矩形组成的,右边的矩形是最低的,中间的矩形是最高的,故选:A.4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20° B.25° C.30° D.35°【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.下列运算正确的是()A.a2•a3=a4 B.(ab3)2=a2b3 C.(2a﹣b)2=4a2﹣2ab+b2 D.=|a|【分析】利用二次根式的化简的法则,完全平方公式,同底数幂的乘法的法则,积的乘方的法则对各项进行运算即可.【解答】解:A、a2•a3=a5,故A不符合题意;B、(ab3)2=a2b6,故B不符合题意;C、(2a﹣b)2=4a2﹣4ab+b2,故C不符合题意;D、,故D符合题意;故选:D.6.如图,点A、B、P在⊙O上,若∠AOB=80°,则∠APB的度数为()A.70° B.60° C.50° D.40°【分析】直接利用圆周角定理求解.【解答】解:∠APB=∠AOB=×80°=40°.故选:D.7.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()A. B. C. D.【分析】根据一次函数y=ax+b的图象经过第二、三、四象限判断出a、b的符号,从而判断出函数开口方向,对称轴的位置,据此即可判断.【解答】解:∵一次函数y=ax+b的图象经过第二、三、四象限,∴a<0,b<0,∴二次函数y=ax2+bx的开口向下,对称轴在y轴左侧,故选:C.8.人类的性别是由一对性染色体(X,Y)决定,当染色体为XX时,是女性;当染色体为XY时,是男性.如图为一对夫妻的性染色体遗传图谱,如果这位女士怀上了一个小孩,该小孩为女孩的概率是()A. B. C. D.【分析】画树状图,共有4种等可能的结果,其中该小孩为女孩的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有4种等可能的结果,其中该小孩为女孩的结果有2种,∴该小孩为女孩的概率为=,故选:C.9.一元二次方程x2+x=0的根的情况为()A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根【分析】根据方程的系数结合根的判别式,即可得出Δ=1>0,进而即可得出方程x2+x=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=0,∴Δ=b2﹣4ac=12﹣4×1×0=1>0,∴方程x2+x=0有两个不相等的实数根.故选:D.10.如图所示,边长为2的等边△ABC是三棱镜的一个横截面.一束光线ME沿着与AB边垂直的方向射入到BC边上的点D处(点D与B,C不重合),反射光线沿DF的方向射出去,DK与BC垂直,且入射光线和反射光线使∠MDK=∠FDK.设BE的长为x,△DFC的面积为y,则下列图象中能大致表示y与x的函数关系的()A. B. C. D.【分析】先根据△ABC是边长为2的等边三角形及ME⊥AB,分别用x表示出BD、CD;再证明∠DFC=90°,进而用含x的式子表示出FC和FD,则可得出y关于x的函数关系式,观察图象即可得出答案.【解答】解:∵△ABC是边长为2的等边三角形,∴∠B=∠C=60°,BC=2,∵ME⊥AB,∴∠BED=90°,∴∠BDE=30°,又∵BE=x,ME沿着与AB边垂直的方向射入到BC边上的点D处(点D与B,C不重合),∴0<x<1,∴BD=2x,CD=2﹣2x.∵∠MDK=∠FDK,DK与BC垂直,∴∠CDF=∠BDE=30°,∴∠DFC=180°﹣∠CDF﹣∠C=90°,∴FC=CD=(2﹣2x)=1﹣x,FD=CD•sin60°=(2﹣2x)×=(1﹣x),∴y=FC•FD=(1﹣x)×(1﹣x)=(1﹣x)2.∴函数图象为开口向上的抛物线,其对称轴为直线x=1.故选:A.第Ⅱ卷二.填空题(共5小题,满分15分,每小题3分)11.要使有意义,则x的取值范围是x≠﹣1.【分析】根据分式有意义的条件,求解即可.【解答】解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.12.不等式组的解集是﹣1<x≤.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【解答】解:,解不等式①,得x,解不等式②,得x>﹣1,所以不等式组的解集为1<x≤.故答案为:1<x≤.13.某运动队要从甲、乙、丙、丁四名跳高运动员中选拔一人参加比赛,教练组统计了最近几次队内选拔赛的成绩并进行了分析,得到表:甲乙丙丁平均数(cm)176173175176方差10.510.532.742.1根据表中数据,教练组应该选择甲参加比赛(填“甲”或“乙”或“丙”或“丁”).【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可.【解答】解:∵甲=丁>丙>乙,∴从甲和丁中选择一人参加,∵S甲2<S丁2,∴教练组应该选择甲参加比赛;故答案为:甲.14.如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为πcm.【分析】连接OE,OD,由等腰三角形的性质推出∠C=∠ODB,得到OD∥AC,推出∠EOD=∠AEO,由OE=OA,∠OEA=∠BAC=50°,因此∠∠EOD=∠BAC=50°,由弧长公式即可求出的长.【解答】解:连接OE,OD,∵OD=OB,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠C=∠ODB,∴OD∥AC,∴∠EOD=∠AEO,∵OE=OA,∴∠OEA=∠BAC=50°,∴∠EOD=∠BAC=50°,∵OD=AB=×6=3(cm),∴的长==π(cm).故答案为:π.15.已知△ABC中,AB=AC=2,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②tan∠PEF=;③S△EPF的最小值为;④S四边形AEPF=1.当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有①③④.【分析】利用旋转的思想观察全等三角形,寻找条件证明三角形全等.根据全等三角形的性质对题中的结论逐一判断.【解答】解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,又∵AP=CP,∠EPA=∠FPC,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF(故①正确),△EPF是等腰直角三角形(最小值为1,tan∠PEF=1,故②错误③正确),S四边形AEPF=S△ABC=1(故④正确),①③④正确;故答案为:①③④.三.解答题(共8小题,满分75分)16.(10分)(1)计算:;(2)化简:.【分析】(1)根据零指数幂运算,负整数指数幂运算,将式子化为3﹣1+,再求值即可;(2)将分式化为•,再化简即可.【解答】解:(1)=3﹣1+=;(2)=÷=•=x+2.17.(9分)某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新冠病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:858095100909585657585909070901008080909575乙小区:806080956510090858580957580907080957510090整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25ab乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=8,b=5,c=90,d=82.5;(2)若甲小区共有600人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由(至少写出一条).【分析】(1)数出甲小区80<x≤90的数据数可求a;甲小区90<x≤100的数据数可求b;根据中位数的意义,将乙小区的抽查的20人成绩排序找出处在中间位置的两个数的平均数即可为中位数,从甲小区成绩中找出出现次数最多的数即为众数;(2)抽查甲小区20人中成绩高于90分的人数有5人,因此甲小区成绩大于90分的人数占抽查人数,求出甲小区成绩大于90分的人数即可;(3)依据表格中平均数、中位数、众数等比较做出判断即可.【解答】解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)600×=150(人).答:估计甲小区成绩大于90分的人数是150人.(3)根据(1)中数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是:甲小区的平均数、中位数、众数都比乙小区的大.故答案为:8,5,90,82.5.18.(9分)如图,在直角坐标平面内,函数y=(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.(1)求反比例函数的解析式;(2)若△ABD的面积为4,求点B的坐标;(3)求证:DC∥AB.【分析】(1)函数y=的图象经过A(1,4),可求m=4,则答案可求出,(2)由△ABD的面积为4,即a(4﹣)=4,得a=3,则答案可求出;(3)得出且∠AEB=∠CED,证明△AEB∽△CED,得出∠ABE=∠CDE,则DC∥AB.【解答】(1)解:∵函数y=(x>0,m是常数)图象经过A(1,4),∴m=4,∴y=,(2)设BD,AC交于点E,据题意,可得B点的坐标为(a,),D点的坐标为(0,),E点的坐标为(1,),∵a>1,∴DB=a,AE=4﹣.∵△ABD的面积为4,∴a(4﹣)=4,解得a=3,∴点B的坐标为(3,);(3)证明:据题意,点C的坐标为(1,0),DE=1,∵a>1,∴EC=,BE=a﹣1,∴=a﹣1,=a﹣1.∴,∵∠AEB=∠CED,∴△AEB∽△CED,∴∠ABE=∠CDE,∴DC∥AB;19.(9分)如图,A处有一垂直于地面的标杆AM,热气球沿着与AM的夹角为15°的方向升空,到达B处,这时在A处的正东方向200米的C处测得B的仰角为30°(AM、B、C在同一平面内).求A、B之间的距离.(结果精确到1米,≈1.414)【分析】过点A作AD⊥BC,垂足为D,根据题意可得:AC=200米,∠BAC=105°,∠C=30°,从而利用三角形内角和定理可得∠ABD=45°,然后在Rt△ACD中,利用含30度角的直角三角形的性质可得AD=100米,再在Rt△ABD中,利用锐角三角函数的定义进行计算,即可解答.【解答】解:过点A作AD⊥BC,垂足为D,由题意得:AC=200米,∠BAC=90°+15°=105°,∠C=30°,∴∠ABD=180°﹣∠BAC﹣∠C=45°,在Rt△ACD中,∠C=30°,∴AD=AC=100(米),在Rt△ABD中,AB===100≈141(米),∴A、B之间的距离约为141米.20.(9分)夏季即将来临,空调的销售逐渐火起来,某商行去年7月份销售某品牌A型号空调总额为32万元,由于原材料涨价,今年该型号空调销售单价比去年提高了400元.若今年7月份与去年7月份该型号空调销售量相同,则今年7月份该型号空调的销售总额将增加25%.该品牌A,B两种型号空调的进货和销售价格表如下:A型号B型号进货价格(元/台)11001400销售价格(元/台)今年的销售价格2400(1)求今年7月份该品牌A型号空调的销售单价;(2)商行准备购入该品牌A型号空调和B型号空调共400台,且B型号空调进货数量不超过A型号空调数量的2倍,应如何进货才能使这批空调获利最多?【分析】(1)设今年7月份该品牌A型号空调的销售单价为x元,则去年7月份该品牌A型号空调的销售单价为(x﹣400)元,利用销售数量=销售总价÷销售单价,结合今年7月份与去年7月份该型号空调销售量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A型号空调m台,则购进B型号空调(400﹣m)台,根据B型号空调进货数量不超过A型号空调数量的2倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设购进的这批空调全部售出后获得的利润为w元,利用总利润=每台的销售利润×销售数量(进货数量),即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设今年7月份该品牌A型号空调的销售单价为x元,则去年7月份该品牌A型号空调的销售单价为(x﹣400)元,依题意得:=,解得:x=2000,经检验,x=2000是原方程的解,且符合题意,答:今年7月份该品牌A型号空调的销售单价为2000元.(2)设购进A型号空调m台,则购进B型号空调(400﹣m)台,依题意得:400﹣m≤2m,解得:m≥.设购进的这批空调全部售出后获得的利润为w元,则w=(2000﹣1100)m+(2400﹣1400)(400﹣m)=﹣100m+400000,∵﹣100<0,∴w随m的增大而减小,又∵m≥,且m为正整数,∴当m=134时,w取得最大值,此时400﹣m=400﹣134=266.答:当购进A型号空调134台,B型号空调266台时,才能使这批空调获利最多.21.(9分)如图,AB为⊙O的直径,C、E为⊙O上的两点,过点E的切线交CB的延长线于点D,且CD⊥DE,连接CE,AE.(1)求证:∠ABC=2∠A;(2)若⊙O半径为,AB:BD=5:1,求AE的长.【分析】(1)连接OE,利用圆的切线的性质定理和平行线的判定与性质得到∠ABC=∠BOE,利用圆周角定理和等量代换即可得出结论;(2)连接BD,利用圆周角定理,圆的切线的性质定理,直角三角形的性质和相似三角形的判定与性质求得线段BE的长,再利用勾股定理即可得出结论.【解答】(1)证明:连接OE,如图,∵DE为⊙O的切线,∴OE⊥DE,∵CD⊥DE,∴OE∥CD,∴∠ABC=∠BOE.∵∠BOE=2∠A,∴∠ABC=2∠A;(2)解:连接BE,∵⊙O半径为,AB:BD=5:1,∴AB=2,BD=.∵AB为⊙O的直径,∴∠AEB=90°,∴∠AEB=∠D=90°.∵OE⊥ED,∴∠OEB+∠BED=90°.∵OB=OE,∴∠OEB=∠OBE,∴∠OBE+∠BED=90°.∵∠OBE+∠A=90°,∴∠A=∠BED,∴△ABE∽△EBD,∴,∴BE2=AB•BD=2×=4,∵BE>0,∴BE=2.∴AE===4.22.(10分)如图,抛物线y=ax2+bx+4与x轴交于点A(﹣2,0)和点B(4,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)点P为抛物线位于第一象限上一个动点,过点P作PD⊥x轴于点D,交直线BC于点Q,求线段PQ的最大值;(3)点M(﹣2,8),N(3,8),将抛物线向上平移m个单位,若平移后的抛物线与线段MN只有一个公共点,直接写出m的取值范围.【分析】(1)由待定系数法即可求解;(2)设,则Q(x,﹣x+4),则≤2,即可求解;(3)①当抛物线顶点落在MN上时,则,即可求解;②当抛物线经过点M(﹣2,8)时,,即可求解.【解答】解:(1)设抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),则﹣8a=4,解得:a=﹣,∴抛物线的解析式为;(2)如图:对于,当x=0时,y=4,则点C(0,4),∵B(4,0),∴直线BC的解析式为y=﹣x+4.设,则Q(x,﹣x+4),∴≤2,当x=2时,PQ的最大值是2;(3)抛物线向上平移m个单位后解析式为,∴平移后的抛物线的顶点坐标为,①当抛物线顶点落在MN上时,则,解得.②当抛物线经过点M(﹣2,8)时,,解得m=8;当抛物线经过点N(3,8)时,,解得,∴时,满足题意.综上所述,或.23.(10分)综合与实践【问题情境】在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渠道总监合同范本
- 苏酒经销协议书
- 苗木补偿协议书
- 葡萄转让协议书
- 融创认购协议书
- 视频直播协议书
- 设备改造协议书
- 设施租赁协议书
- 评审委托协议书
- 请求支援协议书
- 西安市2024陕西西安市专职消防员管理中心招聘事业编制人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 吉安市农业农村发展集团有限公司及下属子公司2025年第二批面向社会公开招聘备考题库有答案详解
- 文冠果整形修剪课件
- 2025年盐城港控股招聘面试题库及答案
- 2026年益阳医学高等专科学校单招职业技能测试题库附答案
- 国家开放大学《商务英语4》期末考试精准题库
- 2025秋季《中华民族共同体概论》期末综合考试-国开(XJ)-参考资料
- 机械通气患者误吸预防及管理规范
- 2025年应急环境监测车行业分析报告及未来发展趋势预测
- AI生成时代虚拟生产力与生产关系变革
- 船舶进出港调度智能化方案
评论
0/150
提交评论