河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题含解析_第1页
河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题含解析_第2页
河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题含解析_第3页
河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题含解析_第4页
河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省衡水市故城县高级中学2026届数学高二上期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.2.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.33.现要完成下列两项调查:①从某社区70户高收入家庭、335户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.这两项调查宜采用的抽样方法是()A①简单随机抽样,②分层抽样 B.①分层抽样,②简单随机抽样C.①②都用简单随机抽样 D.①②都用分层抽样4.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.395.若曲线f(x)=x2的一条切线l与直线平行,则l的方程为()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=06.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.37.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线已知的顶点,则的欧拉线方程为()A. B.C. D.8.命题“,”的否定形式是()A., B.,C., D.,9.一质点的运动方程为(位移单位:m,时间单位:s),则该质点在时的瞬时速度为()A.4 B.12C.15 D.2110.如图,平行六面体中,为的中点,,,,则()A. B.C. D.11.若点是函数图象上的动点(其中的自然对数的底数),则到直线的距离最小值为()A. B.C. D.12.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.14.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是奇数的四位数,这样的四位数一共有___________个.(用数字作答)15.已知分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对16.过圆内的点作一条直线,使它被该圆截得的线段最短,则直线的方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.18.(12分)在正方体中,、、分别是、、的中点(1)证明:平面平面;(2)证明:19.(12分)已知椭圆C:的右顶点为A,上顶点为B.离心率为,(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,过点F的直线l与椭圆C相交于D,E两点,直线:与x轴相交于点H,过点D作,垂足为①求四边形ODHE(O为坐标原点)面积的取值范围;②证明:直线过定点G,并求点G的坐标20.(12分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求21.(12分)已知函数,.(1)若,求的最大值;(2)若,求证:有且只有一个零点.22.(10分)已知数列是等差数列,其前项和为,且,.(1)求;(2)记数列的前项和为,求当取得最小值时的的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.2、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用3、B【解析】通过简单随机抽样和分层抽样的定义辨析得到选项【详解】在①中,由于购买能力与收入有关,应该采用分层抽样;在②中,由于个体没有明显差别,而且数目较少,应该采用简单随机抽样故选:B4、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.5、D【解析】设切点为,则切线的斜率为,然后根据条件可得的值,然后可得答案.【详解】设切点为,因为,所以切线的斜率为因为曲线f(x)=x2的一条切线l与直线平行,所以,即所以l的方程为,即故选:D6、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D7、D【解析】根据题意得出的欧拉线即为线段的垂直平分线,然后求出线段的垂直平分线的方程即可.【详解】因为,所以线段的中点的坐标,线段所在直线的斜率,则线段的垂直平分线的方程为,即,因为,所以的外心、重心、垂心都在线段的垂直平分线上,所以的欧拉线方程为.故选:D【点睛】本题主要考走查直线的方程,解题的关键是准确找出欧拉线,属于中档题.8、A【解析】特称命题的否定是全称命题【详解】的否定形式是故选:A9、B【解析】由瞬时变化率的定义,代入公式求解计算.【详解】由题意,该质点在时的瞬时速度为.故选:B10、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题11、A【解析】设,,设与平行且与相切的直线与切于,由导数的几何意义可求出点的坐标,则到直线的距离最小值为点到直线的距离,再求解即可.【详解】解:设,,设与平行且与相切的直线与切于所以所以则到直线的距离为,即到直线的距离最小值为,故选:A12、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.14、504【解析】分两种情况求解,一是四个数字中没有奇数,二是四个数字中有一个奇数,然后根据分类加法原理可求得结果【详解】当四个数字中没有奇数时,则这样的四位数有种,当四个数字中有一个奇数时,则从5个奇数中选一个奇数,再从4个偶数中选3个数,然后对这4个数排列即可,所以有种,所以由分类加法原理可得共有种,故答案为:50415、0【解析】计算每两个向量的数量积,判断该两个向量是否垂直,可得答案.【详解】因为,,.所以中任意两个向量都不垂直,即α,β,γ中任意两个平面都不垂直故答案为:0.16、【解析】由已知得圆的圆心为,所以当直线时,被该圆截得的线段最短,可求得直线的方程.【详解】解:由得,所以圆的圆心为,所以当直线时,被该圆截得的线段最短,所以,解得,所以直线l的方程为,即,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以18、(1)证明见解析;(2)证明见解析.【解析】(1)连接,分别证明出平面,平面,利用面面平行的判定定理可证得结论成立;(2)证明出平面,利用线面垂直的性质可证得结论成立.【小问1详解】证明:连接,在正方体中,,,所以,四边形为平行四边形,所以,在中,、分别为、的中点,所以,,所以,,因为平面,平面,所以,平面因为且,、分别为、的中点,则且,所以,四边形为平行四边形,则,,平面,平面,平面又,所以,平面平面【小问2详解】证明:在正方体中,平面,平面,,因为四边形为正方形,则,因为,则平面由知(1)平面平面,所以,平面,平面,因此,19、(1);(2)①;②详见解析;.【解析】(1)由题得,即求;(2)①由题可设,利用韦达定理法可得,进而可得四边形ODHE面积,再利用对勾函数的性质可求范围;②由题可得,令,通过计算可得,即得.【小问1详解】由题可得,解得,∴椭圆C的标准方程.【小问2详解】①由题可知,可设直线,,由,可得,∴,,∴,∴四边形ODHE面积,令,则,因为,所以,当时,取等号,∴,∴四边形ODHE面积取值范围为;②由上可得,直线,令,得,由,可得,∴,∴直线过定点G.20、(1)(2)【解析】(1)根据椭圆的简单几何性质即可求出;(2)设,联立与椭圆方程,求出,再根据平行四边形的性质求出点的坐标,然后由点G在椭圆C上,可求出,从而可得【小问1详解】∵椭圆C的右顶点为,∴,∵轴,且,∴,∴,所以椭圆C的标准方程为【小问2详解】设,将直线代入,消去y并整理得,由,得.(*)由根与系数的关系可得,∴,∵四边形为平行四边形,∴,得,将G点坐标代人椭圆C的方程得,满足(*)式∴21、(1)(2)证明见解析【解析】(1)利用导数判断原函数单调性,从而可求最值.(2)求导后发现导数中无参数,故单调性与(1)中所求一致,然后利用零点存在定理结合的范围,以及函数单调性证明在定义域内有且只有一个零点.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论