陕西省西安市阎良区2026届高二数学第一学期期末统考试题含解析_第1页
陕西省西安市阎良区2026届高二数学第一学期期末统考试题含解析_第2页
陕西省西安市阎良区2026届高二数学第一学期期末统考试题含解析_第3页
陕西省西安市阎良区2026届高二数学第一学期期末统考试题含解析_第4页
陕西省西安市阎良区2026届高二数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市阎良区2026届高二数学第一学期期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,若,则的取值范围为()A. B.C. D.2.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.3.已知平面,的法向量分别为,,且,则()A. B.C. D.4.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.5.已知椭圆的左、右焦点分别为、,点在椭圆上,若,则的面积为()A. B.C. D.6.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列7.过双曲线Ω:(a>0,b>0)右焦点F作x轴的垂线,与Ω在第一象限的交点为M,且直线AM的斜率大于2,其中A为Ω的左顶点,则Ω的离心率的取值范围为()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)8.如果直线与直线垂直,那么的值为()A. B.C. D.29.设为空间中的四个不同点,则“中有三点在同一条直线上”是“在同一个平面上”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件10.已知是和的等比中项,则圆锥曲线的离心率为()A. B.或2C. D.或11.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.12.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形14.已知数列满足,,则______.15.双曲线的渐近线方程是____________16.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前和为,数列是公比为2的等比数列,且,(1)求数列和数列的通项公式;(2)现由数列与按照下列方式构造成新的数列①将数列中的项去掉数列中的项,按原来的顺序构成新数列;②数列与中的所有项分别构成集合与,将集合中的所有元素从小到大依次排列构成一个新数列;在以上两个条件中任选一个做为已知条件,求数列的前30项和.18.(12分)已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知点和平面内一点,过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,,试求,满足的关系式.19.(12分)如图所示的四棱锥的底面是一个等腰梯形,,且,是△的中线,点E是棱的中点(1)证明:∥平面(2)若平面平面,且,求平面与平面夹角余弦值(3)在(2)条件下,求点D到平面的距离20.(12分)已知函数.(1)若与在处有相同的切线,求实数的取值;(2)若时,方程在上有两个不同的根,求实数的取值范围.21.(12分)已知点,,设动点P满足直线PA与PB的斜率之积为,记动点P的轨迹为曲线E(1)求曲线E的方程;(2)若动直线l经过点,且与曲线E交于C,D(不同于A,B)两点,问:直线AC与BD的斜率之比是否为定值?若为定值,求出该定值;若不为定值,请说明理由22.(10分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意,由为原点到直线上点的距离的平方,再根据点到直线垂线段最短,即可求得范围.【详解】由,,视为原点到直线上点的距离的平方,根据点到直线垂线段最短,可得,所有的取值范围为,故选:C.2、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A3、D【解析】由题得,解方程即得解.【详解】解:因为,所以所以,所以,所以.故选:D4、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B5、B【解析】求出,可知为等腰三角形,取的中点,可得出,利用勾股定理求得,利用三角形的面积公式可求得结果.【详解】在椭圆中,,,则,所以,,由椭圆的定义可得,取的中点,因为,则,由勾股定理可得,所以,.故选:B.6、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.7、B【解析】求点A和M的坐标,进而表示斜率,可得,整理得b2>2ac+2a2,从而可解得离心率的范围.【详解】F(c,0),设M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.8、A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A9、A【解析】由公理2的推论即可得到答案.【详解】由公理2的推论:过一条直线和直线外一点,有且只有一个平面,可得在同一平面,故充分条件成立;由公理2的推论:过两条平行直线,有且只有一个平面,可得,当时,同一个平面上,但中无三点共线,故必要条件不成立;故选:A【点睛】本题考查点线面的位置关系和充分必要条件的判断,重点考查公理2及其推论;属于中档题;公理2的三个推论:经过一条直线和直线外一点,有且只有一个平面;经过两条平行直线,有且只有一个平面;经过两条相交直线,有且只有一个平面;10、B【解析】由等比中项的性质可得,分别计算曲线的离心率.【详解】由是和的等比中项,可得,当时,曲线方程为,该曲线为焦点在轴上的椭圆,离心率,当时,曲线方程为,该曲线为焦点在轴上的双曲线,离心率,故选:B.11、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.12、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.14、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102315、【解析】由双曲线的方程可知,,即可直接写出其渐近线的方程.【详解】由双曲线的方程为,可知,;则双曲线的渐近线方程为.故答案:.16、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解析】(1)由题意可直接得到等比数列的通项公式;求出等差数列的公差,即可得到其通项公式;(2)若选①,则可确定由数列前33项的和减去,即可得答案;若选②,则可确定由数列前27项的和加上,即可得答案.【小问1详解】因为数列为等比数列,且,所以.又因,所以,又,则,故等差数列的通项公式为.【小问2详解】因为,,所以,而若选①因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1632.若选②因为在数列前30项内,不在在数列前30项内.,则数列前30项和为:=1203.18、(1);(2).【解析】(1)根据直线与圆相切可得,再结合离心率及间的关系可得的值,进而得到椭圆的方程;(2)分直线的斜率存在与不存在两种情况考虑,分别求出点的坐标后再求出的值,进而得到,最后根据斜率公式可得所求的关系式【详解】(1)因为圆与直线相切,所以圆心到直线的距离,即所以,又由题意得所以,所以椭圆的标准方程为(2)①当直线的斜率不存在时,可得直线方程为,由,解得或,不妨设,,所以,又,所以,所以,整理得所以满足的关系式为.②当直线的斜率存在时,设直线,由消去并整理得,设点,则有,所以.所以,所以,整理得综上可得满足的关系式为【点睛】(1)判断直线与椭圆的位置关系时,一般把二者方程联立得到方程组,判断方程组解的个数,方程组有几个解,直线与椭圆就有几个公共点,方程组的解对应公共点的坐标(2)对于直线与椭圆位置关系的题目,注意设而不求和整体代入方法的运用.解题步骤为:①设直线与椭圆的交点为;②联立直线与椭圆的方程,消元得到关于x或y的一元二次方程;③利用根与系数的关系设而不求;④利用题干中的条件转化为,或,,进而求解.19、(1)证明见解析;(2);(3).【解析】(1)连接、,平行四边形的性质、线面平行的判定可得平面、平面,再根据面面平行的判定可得平面平面,利用面面平行的性质可证结论;(2)取的中点为,连接,证明出平面,,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.(3)利用等体积法,求D到平面的距离【小问1详解】连接、,由、分别是棱、的中点,则,平面,平面,则平面又,且,∴且,四边形是平行四边形,则,平面,平面,则平面又,可得平面平面.又平面∴平面【小问2详解】由知:,又平面平面,平面平面,平面,∴平面取的中点为,连接、,由且,故四边形为平行四边形,故,则△为等边三角形,故,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系易知,,所以、、、、,,,,设平面的法向量为,则,令,得设平面的法向量为,则,令,得设平面与平面所成的锐二面角为.则,即平面与平面所成锐二面角的余弦值为【小问3详解】由(2)知:平面,则是三棱锥的高且,四边形为平行四边形,又,即为菱形,∴,而,则,且,∴,故.又,由上易知:△为等腰三角形且,∴,则D到平面的距离.20、(1)(2)【解析】(1)根据导数的几何意义求得函数在处的切线方程,再由有相同的切线这一条件即可求解;(2)先分离,再研究函数的单调性,最后运用数形结合的思想求解即可.【小问1详解】设公切线与的图像切于点,f'(x)=1+lnx⇒f由题意得:;【小问2详解】当时,,①,①式可化为为,令令,,在上单调递增,在上单调递减.,当时,由题意知:21、(1);(2)直线AC和BD的斜率之比为定值【解析】(1)设,依据两点的斜率公式可求得曲线E的方程(2)设直线l:,,,联立方程得,得出根与系数的关系,表示直线AC的斜率,直线B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论