四川省南充市阆中中学2026届数学高三上期末经典试题含解析_第1页
四川省南充市阆中中学2026届数学高三上期末经典试题含解析_第2页
四川省南充市阆中中学2026届数学高三上期末经典试题含解析_第3页
四川省南充市阆中中学2026届数学高三上期末经典试题含解析_第4页
四川省南充市阆中中学2026届数学高三上期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省南充市阆中中学2026届数学高三上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. B. C. D.2.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.3.已知函数(),若函数有三个零点,则的取值范围是()A. B.C. D.4.已知函数,.若存在,使得成立,则的最大值为()A. B.C. D.5.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)6.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣27.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是()A.至少有一个样本点落在回归直线上B.若所有样本点都在回归直线上,则变量同的相关系数为1C.对所有的解释变量(),的值一定与有误差D.若回归直线的斜率,则变量x与y正相关8.已知数列对任意的有成立,若,则等于()A. B. C. D.9.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体10.在中,,则()A. B. C. D.11.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值12.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.14.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.15.设等比数列的前项和为,若,则数列的公比是.16.已知函数,则曲线在点处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.18.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离.19.(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”.(1)若数列的前项和,,试判断数列是否为“数列”?说明理由;(2)若公差为的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,,且对于任意,均有,求数列的通项公式.20.(12分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.(1)求椭圆方程;(2)若直线与椭圆交于另一点,且,求点的坐标.21.(12分)已知A是抛物线E:y2=2px(p>0)上的一点,以点A和点B(2,0)为直径两端点的圆C交直线x=1于M,N两点.(1)若|MN|=2,求抛物线E的方程;(2)若0<p<1,抛物线E与圆(x﹣5)2+y2=9在x轴上方的交点为P,Q,点G为PQ的中点,O为坐标原点,求直线OG斜率的取值范围.22.(10分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.(1)求抛物线的方程;(2)直线与抛物线交于、两点,若,求点到直线的最大距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.2、A【解析】

利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.3、A【解析】

分段求解函数零点,数形结合,分类讨论即可求得结果.【详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【点睛】本题考查由函数零点的个数求参数范围,属中档题.4、C【解析】

由题意可知,,由可得出,,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,,由于,则,同理可知,,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,,则,,则,构造函数,其中,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.5、C【解析】

先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.6、D【解析】

化简z=(1+2i)(1+ai)=,再根据z∈R求解.【详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.7、D【解析】

对每一个选项逐一分析判断得解.【详解】回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;所有样本点都在回归直线上,则变量间的相关系数为,故B错误;若所有的样本点都在回归直线上,则的值与相等,故C错误;相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.故选D.【点睛】本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.8、B【解析】

观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.9、C【解析】

根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.10、A【解析】

先根据得到为的重心,从而,故可得,利用可得,故可计算的值.【详解】因为所以为的重心,所以,所以,所以,因为,所以,故选A.【点睛】对于,一般地,如果为的重心,那么,反之,如果为平面上一点,且满足,那么为的重心.11、C【解析】

采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.12、C【解析】

由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

依题意得,再求点到平面的距离为点到直线的距离,用公式所以即可得出答案.【详解】解:正三棱柱的所有棱长均为2,则,点到平面的距离为点到直线的距离所以,所以.故答案为:【点睛】本题考查椎体的体积公式,考查运算能力,是基础题.14、【解析】

确定平面即为平面,四边形是菱形,计算面积得到答案.【详解】如图,在正方体中,记的中点为,连接,则平面即为平面.证明如下:由正方体的性质可知,,则,四点共面,记的中点为,连接,易证.连接,则,所以平面,则.同理可证,,,则平面,所以平面即平面,且四边形即平面截正方体所得的截面.因为正方体的棱长为,易知四边形是菱形,其对角线,,所以其面积.故答案为:【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.15、.【解析】

当q=1时,.当时,,所以.16、【解析】

根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点在以为直径的圆上【解析】

(1)根据题意列出关于,,的方程组,解出,,的值,即可得到椭圆的标准方程;(2)设点,,则,,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上.【详解】(1)由题意可知,,解得,椭圆的标准方程为:.(2)设点,,则,,直线的斜率为,直线的方程为:,令得,,点的坐标为,,点的坐标为,,,,又点,在椭圆上,,,,点在以为直径的圆上.【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档题.18、(1)..(2)最大距离为.【解析】

(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即.直线的直角坐标方程为.(2)可知曲线的参数方程为(为参数),设,,则到直线的距离为,所以线段的中点到直线的最大距离为.【点睛】本题考查了极坐标方程,参数方程,距离的最值问题,意在考查学生的计算能力.19、(1)不是,见解析(2)(3)【解析】

(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【详解】(1)当时,又,所以.所以当时,,而,所以时,不是数列中的项,故数列不是为“数列”(2)因为数列是公差为的等差数列,所以.因为数列为“数列”所以任意,存在,使得,即有.①若,则只需,使得,从而得是数列中的项.②若,则.此时,当时,不为正整数,所以不符合题意.综上,.(3)由题意,所以,又因为,且数列为“数列”,所以,即,所以数列为等差数列.设数列的公差为,则有,由,得,整理得,①.②若,取正整数,则当时,,与①式对应任意恒成立相矛盾,因此.同样根据②式可得,所以.又,所以.经检验当时,①②两式对应任意恒成立,所以数列的通项公式为.【点睛】本题考查数列新定义题、等差数列的通项公式,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度较大.20、(1);(2)或【解析】

(1)根据的周长为,结合离心率,求出,即可求出方程;(2)设,则,求出直线方程,若斜率不存在,求出坐标,直接验证是否满足题意,若斜率存在,求出其方程,与直线方程联立,求出点坐标,根据和三点共线,将点坐标用表示,坐标代入椭圆方程,即可求解.【详解】(1)因为椭圆的离心率为,的周长为6,设椭圆的焦距为,则解得,,,所以椭圆方程为.(2)设,则,且,所以的方程为①.若,则的方程为②,由对称性不妨令点在轴上方,则,,联立①,②解得即.的方程为,代入椭圆方程得,整理得,或,.,不符合条件.若,则的方程为,即③.联立①,③可解得所以.因为,设所以,即.又因为位于轴异侧,所以.因为三点共线,即应与共线,所以,即,所以,又,所以,解得,所以,所以点的坐标为或.【点睛】本题考查椭圆的标准方程以及应用、直线与椭圆的位置关系,考查分类讨论思想和计算求解能力,属于较难题.21、(1).(2)【解析】

(1)设A的坐标为A(x0,y0),由题意可得圆心C的坐标,求出C到直线x=1的距离.由半个弦长,圆心到直线的距离及半径构成直角三角形可得p的值,进而求出抛物线的方程;(2)将

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论