2026届滨州市重点中学高二上数学期末统考试题含解析_第1页
2026届滨州市重点中学高二上数学期末统考试题含解析_第2页
2026届滨州市重点中学高二上数学期末统考试题含解析_第3页
2026届滨州市重点中学高二上数学期末统考试题含解析_第4页
2026届滨州市重点中学高二上数学期末统考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届滨州市重点中学高二上数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.32.若函数的图象如图所示,则函数的导函数的图象可能是()A. B.C D.3.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.84.设函数,若为奇函数,则曲线在点处的切线方程为()A. B.C. D.5.定义运算:.已知,都是锐角,且,,则()A. B.C. D.6.若两直线与互相垂直,则k的值为()A.1 B.-1C.-1或1 D.27.设是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于()A. B.C.24 D.488.数列2,,9,,的一个通项公式可以是()A. B.C. D.9.等差数列的公差,且,,则的通项公式是()A. B.C. D.10.已知直线、的方向向量分别为、,若,则等于()A.1 B.2C.0 D.311.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则______.14.如图,在三棱锥中,,二面角的余弦值为,若三棱锥的体积为,则三棱锥外接球的表面积为______15.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________16.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥的底面为正方形,底面,设平面与平面的交线为.(1)证明:;(2)已知,为直线上的点,求与平面所成角的正弦值的最大值.18.(12分)已知函数.(1)讨论的单调性;(2)当a=1时,对于任意的,,都有恒成立,则m的取值范围.19.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?20.(12分)已知等差数列的前项和满足,.(1)求的通项公式;(2)设,求数列的前n项和.21.(12分)如图,四棱锥中,底面为矩形,底面,,点是棱的中点(1)求证:平面,并求直线与平面的距离;(2)若,求平面与平面所成夹角的余弦值22.(10分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D2、C【解析】由函数的图象可知其单调性情况,再由导函数与原函数的关系即可得解.【详解】由函数的图象可知,当时,从左向右函数先增后减,故时,从左向右导函数先正后负,故排除AB;当时,从左向右函数先减后增,故时,从左向右导函数先负后正,故排除D.故选:C.3、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.4、C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C5、B【解析】,只需求出与的正、余弦值即可,用平方关系时注意角的范围.【详解】解:因为,都是锐角,所以,,因为,所以,即,,所以,,因为,所有,故选:B.【点睛】信息给予题,已知三角函数值求三角函数值,考查根据三角函数的恒等变换求值,基础题.6、B【解析】根据互相垂直的两直线的性质进行求解即可.【详解】由,因此直线的斜率为,直线的斜率为,因为两直线与互相垂直,所以,故选:B7、C【解析】双曲线的实轴长为2,焦距为.根据题意和双曲线的定义知,所以,,所以,所以.所以.故选:C【点睛】本题主要考查了焦点三角形以及椭圆的定义运用,属于基础题型.8、C【解析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C9、C【解析】由于数列为等差数列,所以,再由可得可以看成一元二次方程的两个根,由可知,所以,从而可求出,可得到通项公式.【详解】解:因为数列为等差数列,所以,因为,所以可以看成一元二次方程的两个根,因为,所以,所以,解得,所以故选:C【点睛】此题考查的是等差数列的通项公式和性质,属于基础题.10、C【解析】由可得出,利用空间向量数量积的坐标运算可得出关于实数的等式,由此可解得实数的值.【详解】若,则,所以,所以,解得.故选:C11、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.12、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、1023【解析】由数列递推公式求特定项,依次求下去即可解决.【详解】数列中,则,,,,,,故答案为:102314、【解析】取的中点,连接,,过点A作,垂足为,设,利用三角形的边角关系求出,利用锥体的体积公式求出的值,确定三棱锥外接球的球心,求解外接球的半径,由表面积公式求解即可【详解】取的中点,连接,,过点A作,交DE的延长线于点,所以为二面角的平面角,设,则,,所以,所以,EH=,因为三棱锥的体积为,所以,解得:,,设外接圆的圆心为,三棱锥外接球的球心为,连接,,,过点O作OF⊥AH于点F,则,,,,设,则,,由勾股定理得:,解得:,所以三棱锥外接球的半径满足,则三棱锥的外接球的表面积为故答案为:【点睛】本题考查了几何体的外接球问题,棱锥的体积公式的理解与应用,解题的关键是确定外接球球心的位置,三棱锥的外接球的球心在过各面外心且与此面垂直的直线上,由此结论可以找到外接球的球心,15、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.16、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由可证得平面,根据线面平行的性质可证得结论;(2)以为坐标原点建立空间直角坐标系,设,利用线面角的向量求法可表示出,分别在、和三种情况下,结合基本不等式求得所求最大值.【小问1详解】四边形为正方形,,又平面,平面,平面,又平面,平面平面,.【小问2详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,则,,,,由(1)知:,则可设,,,,设平面的法向量,则,令,则,,,设直线与平面所成角为,;当时,;当时,(当且仅当,即时取等号);当时,;综上所述:直线与平面所成角正弦值的最大值为.18、(1)答案见解析;(2).【解析】(1)由题可得,利用导数与单调性关系分类讨论即得;(2)由题可得,利用函数的单调性及极值求函数最值即得.【小问1详解】由题可得的定义域为,若,恒有,当时,,当时,,∴在上单调递增,在上单调递减,若,令,得,若,恒有在上单调递增,若,当时,;当时,,故在和上单调递增,在上单调递减,若,当时,;当时,,故在和上单调递增,在上单调递减;综上所述,当,在上单调递增,在上单调递减,当,在和上单调递增,在上单调递减,当,在上单调递增,当,在和上单调递增,在上单调递减;【小问2详解】由(1)知,时,在和上单调递增,在上单调递减;当a=1时,,,,∴.又,,∴.由题意得,,∴.19、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m320、(1)(2)【解析】(1)根据已知求出首项和公差即可求出;(2)利用裂项相消法求解即可.【小问1详解】设等差数列的公差为,因为,所以,化简得,解得,所以【小问2详解】由(1)可知,所以,所以.21、(1)证明见解析,直线与平面的距离为(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,利用空间向量法可证得平面,以及求得直线与平面的距离;(2)利用空间向量法可求得平面与平面所成夹角的余弦值【小问1详解】解:因为平面,四边形为矩形,以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设,则、、、、、,,,,,所以,,,所以,,,又因为,因此,平面.所以,平面的一个法向量为,,平面,平面,则平面,所以,直线到平面的距离为.【小问2详解】解:若,则、,设平面的法向量为,,,则,取,可得,设平面的法向量为,,,则,取,可得,.因此,平面与平面所成夹角的余弦值为.22、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论