版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市安达第七中学2026届数学高二上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.82.如图,在三棱锥中,两两垂直,且,点E为中点,若直线与所成的角为,则三棱锥的体积等于()A. B.C.2 D.3.圆的圆心为()A. B.C. D.4.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;5.若是函数的一个极值点,则的极大值为()A. B.C. D.6.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.7.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.圆 B.双曲线C.抛物线 D.椭圆8.抛物线的焦点到准线的距离是A.2 B.4C. D.9.函数的导数记为,则等于()A. B.C. D.10.刘徽是一个伟大的数学家,他的杰作《九章算术注》和《海岛算经》是中国宝贵的数学遗产,他所提出的割圆术可以估算圆周率π,理论上能把π的值计算到任意精度.割圆术的第一步是求圆的内接正六边形的面积.若在圆内随机取一点,则此点取自该圆内接正六边形的概率是()A. B.C. D.11.若抛物线的焦点与椭圆的右焦点重合,则的值为A. B.C. D.12.方程表示椭圆的充分不必要条件可以是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为_______.14.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______15.与同一条直线都相交的两条直线的位置关系是________16.已知数列满足,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值18.(12分)已知圆与直线相切(1)求圆O的标准方程;(2)若线段AB的端点A在圆O上运动,端点B的坐标是,求线段AB的中点M的轨迹方程19.(12分)在棱长为1的正方体ABCD-A1B1C1D1中,求平面ACD1的一个法向量.20.(12分)为了保证我国东海油气田海域海上平台的生产安全,海事部门在某平台O的北偏西45°方向km处设立观测点A,在平台O的正东方向12km处设立观测点B,规定经过O、A、B三点的圆以及其内部区域为安全预警区.如图所示:以O为坐标原点,O的正东方向为x轴正方向,建立平面直角坐标系(1)试写出A,B的坐标,并求两个观测点A,B之间的距离;(2)某日经观测发现,在该平台O正南10kmC处,有一艘轮船正以每小时km的速度沿北偏东45°方向行驶,如果航向不变,该轮船是否会进入安全预警区?如果不进入,请说明理由;如果进入,则它在安全警示区内会行驶多长时间?21.(12分)已知函数(…是自然对数的底数).(1)求的单调区间;(2)求函数的零点的个数.22.(10分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B2、D【解析】由题意可证平面,取BD的中点F,连接EF,则为直线与所成的角,利用余弦定理求出,根据三棱锥体积公式即可求得体积【详解】如图,∵,点为的中点,∴,,∵,,两两垂直,,∴平面,取BD的中点F,连接EF,∴为直线与所成的角,且,由题意可知,,设,连接AF,则,在中,由余弦定理,得,即,解得,即∴三棱锥的体积故选:3、D【解析】由圆的标准方程求解.【详解】圆的圆心为,故选:D4、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.5、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D6、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.7、D【解析】根据题意知,所以,故点P的轨迹是椭圆.【详解】由题意知,关于CD对称,所以,故,可知点P的轨迹是椭圆.【点睛】本题主要考查了椭圆的定义,属于中档题.8、D【解析】因为抛物线方程可化为,所以抛物线的焦点到准线的距离是,故选D.考点:1、抛物线的标准方程;2、抛物线的几何性质.9、D【解析】求导后代入即可.【详解】,.故选:D.10、B【解析】此点取自该圆内接正六边形的概率是正六边形面积除以圆的面积,分别求出即可.【详解】如图,在单位圆中作其内接正六边形,该正六边形是六个边长等于半径的正三角形,其面积,圆的面积为则所求概率.故选:B【点睛】此题考查几何概率模型求解,关键在于准确求出正六边形的面积和圆的面积.11、D【解析】解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D12、D【解析】由“方程表示椭圆”可求得实数的取值范围,结合充分不必要条件的定义可得出结论.【详解】若方程表示椭圆,则,解得或.故方程表示椭圆的充分不必要条件可以是.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】由求导公式求出导数,再把代入求出切线的斜率,代入点式方程化为一般式即可.【详解】由题意得,∴在点处的切线的斜率是,则在点处的切线方程是,即.【点睛】本题考查导数的几何意义.注意区分“在某点处的切线”与“过某点的切线”,前者“某点”是切点,后者“某点”不一定是切点.14、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.15、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,16、【解析】由题,用累乘法求得通项公式:,则,通过裂项求和即可得出结果.【详解】由题,所以累乘法求通项公式:,所以,经验证时,符合.所以,则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.18、(1)(2)【解析】(1)由圆心到直线的距离等于半径即可求出.(2)由相关点法即可求出轨迹方程.【小问1详解】已知圆与直线相切,所以圆心到直线的距离为半径.所以,所以圆O的标准方程为:【小问2详解】设因为AB的中点是M,则,所以,又因A在圆O上运动,则,所以带入有:,化简得:.线段AB的中点M的轨迹方程为:.19、【解析】建立空间直角坐标系,由向量法求法向量即可.【详解】如图,建立空间直角坐标系,则设平面ACD1的法向量.,又为平面ACD1的一个法向量,化简得令x=1,得y=z=1.平面ACD1的一个法向量.【点睛】本题主要考查了求平面的法向量,属于中档题.20、(1);(2)会驶入安全预警区,行驶时长为半小时【解析】(1)先求出A,B的坐标,再由距离公式得出A,B之间的距离;(2)由三点的坐标列出方程组得出经过三点的圆的方程,设轮船航线所在的直线为,再由几何法得出直线与圆截得的弦长,进而得出安全警示区内行驶时长.【小问1详解】由题意得,∴;【小问2详解】设圆的方程为,因为该圆经过三点,∴,得到.所以该圆方程为:,化成标准方程为:.设轮船航线所在的直线为,则直线的方程为:,圆心(6,8)到直线的距离,所以直线与圆相交,即轮船会驶入安全预警区.直线与圆截得的弦长为,行驶时长小时.即在安全警示区内行驶时长为半小时.21、(1)当时,的单调递增区间为,无单调递减区间;当时,的单调递减区间为,单调递增区间为;(2)时函数没有零点;或时函数有且只有一个零点;时,函数有两个零点.【解析】(1)先对函数求导,然后分和两种情况判断导函数正负,求其单调区间;(2)由,得,构造函数,然后利用导数求出其单调区间和极值,画出此函数的图像,再判断图像与直线的交点情况,从而可得答案【详解】(1)因为,所以,当时,恒成立,所以的单调递增区间为,无单调递减区间;当时,令,得;令,得,所以的单调递减区间为,单调递增区间为.(2)显然0不是函数的零点,由,得.令,则.或时,,时,,所以在和上都是减函数,在上是增函数,时取极小值,又当时,.所以时,关于的方程无解,或时关于的方程只有一个解,时,关于的方程有两个不同解.因此,时函数没有零点,或时函数有且只有一个零点,时,函数有两个零点.【点睛】关键
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年商业街店铺买卖合同
- 2026年污水处理排放监管合同
- 车辆保险合同2026年保险金额协议
- 土地买卖合同协议2026年土地使用权
- 2026年药品销售代理合同模板版
- 2026年数据中心冷通道改造合同范本
- 2026年家庭智能监控设备养护合同
- 土地流转承包合同2026年协议范本
- 2026年借款合同补充协议
- 2026年渔具采购供应合同范本
- 部编版二年级上册语文全册教案
- DB42T 831-2012 钻孔灌注桩施工技术规程
- 新生儿循环系统疾病护理
- DBJ04-T489-2025 《智慧园林建设标准》
- 2025-2030中国石膏墙板行业市场发展趋势与前景展望战略研究报告
- 2024年度企业所得税汇算清缴最 新税收政策解析及操作规范专题培训(洛阳税务局)
- 实验室检测质量控制与管理流程
- 2024年征兵心理测试题目
- 福建省三明市2024-2025学年七年级上学期期末语文试题
- 输电线路安全课件
- 病区8S管理成果汇报
评论
0/150
提交评论