版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省安乡县一中2026届高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则函数()A. B.C. D.2.已知定义域为的函数满足,且,若,则()A. B.C. D.3.已知函数,则的最大值为()A. B.C. D.4.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.5.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数(且)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知,动点满足,则动点轨迹与圆位置关系是()A.外离 B.外切C.相交 D.内切6.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.7.已知全集,集合,,则()A. B.C. D.8.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要9.=A.- B.C.- D.10.若角(0≤≤2π)的终边过点,则=(
)A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数定义域是____________12.已知正实数x,y满足,则的最小值为______13.若直线与圆相切,则__________14.已知是内一点,,记的面积为,的面积为,则__________15.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________16.已知,,则的最大值为______;若,,且,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(1)求f-23(2)作出函数的简图;(3)由简图指出函数的值域;(4)由简图得出函数的奇偶性,并证明.18.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)19.在中,设角的对边分别为,已知.(1)求角的大小;(2)若,求周长的取值范围.20.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.21.如图1所示,在中,分别为的中点,点为线段上的一点,将沿折起到的位置,使如图2所示.(1)求证://平面;(2)求证:;(3)线段上是否存在点,使平面?请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据,令,则,代入求解.【详解】因为已知,令,则,则,所以,‘故选:A2、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A3、D【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求.【详解】令,则,则,令,下面证明函数在上为减函数,在上为增函数,任取、且,则,,则,,,,所以,函数在区间上为减函数,同理可证函数在区间上为增函数,,,.因此,函数的最大值为.故选:D.【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下:(1)判断或证明函数在区间上的单调性;(2)利用函数的单调性求得函数在区间上的最值.4、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A5、C【解析】设动点P的坐标,利用已知条件列出方程,化简可得点P的轨迹方程为圆,再判断圆心距和半径的关系即可得解.,详解】设,由,得,整理得,表示圆心为,半径为的圆,圆的圆心为为圆心,为半径的圆两圆的圆心距为,满足,所以两个圆相交.故选:C.6、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.7、D【解析】先求得全集U和,根据补集运算的概念,即可得答案.【详解】由题意得全集,,所以.故选:D8、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.9、A【解析】.考点:诱导公式10、D【解析】由题意可得:,由可知点位于第一象限,则.据此可得:.本题选择D选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域12、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.13、【解析】由直线与圆相切可得圆心到直线距离等与半径,进而列式得出答案【详解】由题意得,,解得【点睛】本题考查直线与圆的位置关系,属于一般题14、【解析】设BC中点为M,则,所以P到BC的距离为点A到BC距离的,故15、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题16、①.14②.10【解析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【点睛】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(-23)=-(2)作图见解析;(3)[-1,1(4)f(x)为奇函数,证明见解析.【解析】(1)根据对应区间,将自变量代入解析式求值即可.(2)应用五点法确定点坐标列表,再描点画出函数图象.(3)由(2)图象直接写出值域.(4)由(2)图象判断奇偶性,再应用奇偶性定义证明即可.【小问1详解】由解析式知:f(-23)=【小问2详解】由解析式可得:x-2-1012f(x)0-1010∴f(x)的图象如下:【小问3详解】由(2)知:f(x)的值域为[-1,1【小问4详解】由图知:f(x)为奇函数,证明如下:当0<x<2,-2<-x<0时,f(-x)=(-x)当-2<x<0,0<-x<2时,f(-x)=-(-x)又f(x)的定义域为[-2,2],则f(x)18、(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以驾车.【解析】(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值53毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时.由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以驾车.19、(1);(2)【解析】(1)由三角函数的平方关系及余弦定理即可得出(2)利用正弦定理、两角和差的正弦公式、三角函数的单调性转化为三角函数求值域即可得出.【详解】(1)由题意知,即,由正弦定理得由余弦定理得,又.(2),则的周长.,,周长的取值范围是.【点睛】本题主要考查了三角函数的平方关系,正余弦定理,两角和差的正弦公式,三角函数的单调性,属于中档题.20、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【详解】解:容易知道,这两个函数都有最大值、最小值.(1)使函数,取得最大值的x的集合,就是使函数,取得最大值的x的集合;使函数,取得最小值的x的集合,就是使函数,取得最小值的x的集合.函数,的最大值是;最小值是.(2)令,使函数,取得最大值的x的集合,就是使,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年制造业面试题集生产车间主任的选拔与职责
- 2026年发展项目经理的考试题集及答案
- 2026年护士长竞聘面试必问题与答案详解
- 2026年大数据领域系统集成案例与面试题详解
- 2026年国际合作科笔试题集含答案
- 2026年软件测试工程师技能认证培训资料
- 2026年五粮液集团管理培训生招聘面试问题集
- 2026年旅游行业财务规划岗位面试题
- 《GBT 24460-2009太阳能光伏照明装置总技术规范》专题研究报告
- 2026年商标法律顾问面试题库及答案参考
- 2026届江苏省常州市高一上数学期末联考模拟试题含解析
- 2026年及未来5年市场数据中国水质监测系统市场全面调研及行业投资潜力预测报告
- 艺考机构协议书
- 2025年12月27日四川省公安厅遴选面试真题及解析
- 2026年农业科技领域人才选拔与专业技能考核要点解析
- 2025-2030中国海洋工程装备制造业市场供需关系研究及投资策略规划分析报告
- 《生态环境重大事故隐患判定标准》解析
- 2025年度吉林省公安机关考试录用特殊职位公务员(人民警察)备考笔试试题及答案解析
- 2025年中国作家协会所属单位公开招聘工作人员13人备考题库及一套参考答案详解
- 走进歌乐山课件
- 茶叶对外贸易科普
评论
0/150
提交评论