版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海二十五中学人教版七年级下册数学期末压轴难题测试题一、选择题1.如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1和∠4是内错角 B.∠2和∠3是同旁内角C.∠1和∠3是同位角 D.∠3和∠4互为邻补角2.下列图案可以由部分图案平移得到的是()A. B. C. D.3.若点在第四象限内,则点的坐标可能是()A. B. C. D.4.下列语句中,是假命题的是()A.有理数和无理数统称实数B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.在同一平面内,垂直于同一条直线的两条直线互相平行D.两个锐角的和是锐角5.如图所示,,OE平分∠AOD,,,则∠BOF为()A. B. C. D.6.下列计算正确的是()A. B. C. D.7.如图所示,长方形ABCD中,点E在CD边上,AE,BE与线段FG相交构成∠,∠,则∠1,∠2,∠,∠之间的关系是()A.∠1+∠2+180°=∠+∠ B.∠+∠2=∠+∠1C.∠+∠=2(∠1+∠2) D.∠1+∠2=∠a﹣∠8.如图,过点作直线:的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,…,这样依次作下去,得到一组线段:,,,…,则线段的长为()A. B. C. D.二、填空题9.9的算术平方根是.10.将点先关于x轴对称,再关于y轴对称的点的坐标为_______.11.在△ABC中,若∠A=60°,点O是∠ABC和∠ACB角平分线的交点,则∠BOC=________.12.如图,∠ABC与∠DEF的边BC与DE相交于点G,且BA//DE,BC//EF,如果∠B=54°,那么∠E=__________.13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____.14.规定一种关于、的新运算:,那么______.15.若点P(2m+4,3m+3)在x轴上,则点P的坐标为________.16.如图,在平面直角坐标系中,三角形,三角形,三角形都是斜边在轴上,斜边长分别为2,4,6,…的等腰直角三角形.若三角形的顶点坐标分别为,,,则按图中规律,点的坐标为______.三、解答题17.计算:(1)|2−|++2;(2)已知(x–2)2=16,求x的值.18.求下列各式中x的值:(1)9x2-25=0;(2)(x+3)3+27=0.19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.请在括号内填写出证明依据.证明:∵∠B=∠CGF(已知),∴AB∥CD().∵∠DGF=∠F(已知),∴//EF().∴AB//EF().∴∠B+∠F=180°().20.在图所示的平面直角坐标系中表示下面各点:;;;;;(1)点到原点的距离是________;(2)将点向轴的负方向平移个单位,则它与点________重合;(3)连接,则直线与轴是什么关系?(4)点分别到、轴的距离是多少?21.已知的平方根是,的立方根是4,的算术平方根是m.(1)求m的值;(2)如果,其中x是整数,且,求的值.二十二、解答题22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.二十三、解答题23.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.24.(感知)如图①,,求的度数.小明想到了以下方法:解:如图①,过点作,(两直线平行,内错角相等)(已知),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补).(已知),(等式的性质).(等式的性质).即(等量代换).(探究)如图②,,,求的度数.(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.25.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.26.已知,,点为射线上一点.(1)如图1,写出、、之间的数量关系并证明;(2)如图2,当点在延长线上时,求证:;(3)如图3,平分,交于点,交于点,且:,,,求的度数.【参考答案】一、选择题1.A解析:A【分析】同位角:两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角;内错角:两个角分别在截线的两侧,且在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【详解】解:A、和不是内错角,此选项符合题意;B、和是同旁内角,此选项不符合题意;C、和是同位角,此选项不符合题意;D、和是邻补角,此选项不符合题意;故选A.【点睛】本题主要考查了同位角,同旁内角,内错角,邻补角,理解同位角,内错角和同旁内角和邻补角的定义是关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,故选:B.【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A.有理数和无理数统称实数,正确,是真命题,不符合题意;B.在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C.在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D.两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.B【分析】由平行线的性质和角平分线的定义,求出,,然后即可求出∠BOF的度数.【详解】解:∵,∴,,∵OE平分∠AOD,∴,∴;∴;故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.6.D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项错误;D、,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.7.A【分析】根据平行线的性质可得∠AFG+∠BGF=180°,再根据三角形外角的性质可得∠AFG+∠1=∠α,∠2+∠BGF=∠β,由此可得.【详解】解:∵在长方形中AD//BC,∴∠AFG+∠BGF=180°,又∵∠AFG+∠1=∠α,∠2+∠BGF=∠β,∴.故选:A.【点睛】本题考查平行线的性质,三角形外角的性质.三角形一个外角等于与它不相邻的两个内角之和,能正确识图是解题关键.8.B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.【详解】解:由,可得∵点A0坐标为(2,0)∴OA0=2,∴∴∴∴A2020A2021=故答案为:解析:B【分析】由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.【详解】解:由,可得∵点A0坐标为(2,0)∴OA0=2,∴∴∴∴A2020A2021=故答案为:B【点睛】本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.二、填空题9.【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为3.故答案为3.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.10.(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数.关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解.【详解】设关于x轴对称的点为则点的坐标为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数.11.120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=解析:120°【分析】由题意可知求出∠ABC+∠ACB=120°,由BO平分∠ABC,CO平分∠ACB,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.【详解】∵∠A=60°,∴∠ABC+∠ACB=120°,∵BO平分∠ABC,CO平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=60°,∴∠BOC=180°-∠OBC-∠OCB=120°故答案为120°【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理12.126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE,BC//EF,,∠B=54°,,故答案为:126°.【点睛】本题考查解析:126°【分析】根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可.【详解】BA//DE,BC//EF,,∠B=54°,,故答案为:126°.【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.【分析】根据新定义,将3与-2代入原式求解即可.【详解】.故答案为:.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.解析:【分析】根据新定义,将3与-2代入原式求解即可.【详解】.故答案为:.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.15.(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P解析:(2,0)【分析】根据x轴上点的坐标的特点y=0,计算出m的值,从而得出点P坐标.【详解】解:∵点P(2m+4,3m+3)在x轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).16.【分析】根据题意可以知道A7A8A9的斜边长为8,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得A7A8A9的斜边长为8,A3A4A5的斜边解析:【分析】根据题意可以知道A7A8A9的斜边长为8,A3A4A5的斜边长为4,A5A6A7的斜边长为6,进行计算求解即可.【详解】解:由题意得A7A8A9的斜边长为8,A3A4A5的斜边长为4,A5A6A7的斜边长为6∴A7A9=8,A5A7=6,A3A5=4∴A3A7=A5A7-A3A5=2∴A3A7=A7A9-A3A7=6又∵A3与原点重合∴A9的坐标为(6,0)故答案为:(6,0).【点睛】本题主要考查了坐标与图形的变化,解题的关键在于能够准确从图形中获取信息求解.三、解答题17.(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18.(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)解:(2)解:【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.【详解】证明:∵∠B=∠CGF(已知),∴AB∥CD(同位角相等,两直线平行),∵∠DGF=∠F(已知
),∴CD∥EF(内错角相等,两直线平行),∴AB∥EF
(
两条直线都与第三条直线平行,这两条直线也互相平行
),∴∠B+∠F=180°(两直线平行,同旁内角互补),故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.20.(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐解析:(1)3;(2)C;(3)平行;(4)7,5【分析】先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点B向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点E分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.【详解】解:(1)∵A(0,3),∴A点到原点O的距离是3;(2)将点B向x轴的负方向平移6个单位,则坐标为(-3,-5),与点C重合;(3)如图,BD与y轴平行;(4)∵E(5,7),∴点E到x轴的距离是7,到y轴的距离是5.【点睛】本题考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.21.(1);(2).【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y解析:(1);(2).【分析】(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,∴b-a=5,其算术平方根为,∴m=(2)x+y=10+∵2<<3,∴12<10+<13,∴x=12,y=10+-12=-2∴x-y=12-(-2)=【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为acm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为acm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3xcm,则宽为2xcm∴6x2=300∴x2=50又∵x>0∴x=∴长方形纸片的长为又∵>202即:>20∴小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.24.[探究]70°;[应用]35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线解析:[探究]70°;[应用]35【分析】[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.【详解】解:[探究]如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).答:∠EPF的度数为70°;[应用]如图③所示,∵EG是∠PEA的平分线,PG是∠PFC的平分线,∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等).∴∠G=∠MGF-MGE=60°-25°=35°.答:∠G的度数是35°.故答案为:35.【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.25.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=∠CAE-∠ACB=(∠CAE-∠ACB)=∠B;(2)由(1)可得,∠F=∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+∠ABG,进而得到∠F+∠H=90°+∠CBG=180°.【详解】解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训记录大纲课件
- 安全培训记录不完善课件
- 中风患者的肢体功能恢复护理
- 机场安全头盔宣讲课件
- 康复护理的未来发展趋势
- 国学文化含古文子衿终南等内容99
- 吸痰护理中的团队协作
- 安全培训警示教育文档课件
- 行业协会安全倡议讲解
- 儿童插画师就业前景
- DBJ-T 15-30-2022 铝合金门窗工程技术规范
- 2024届广东省高三三校12月联考英语试题及答案
- 城市设计编制标准 DG-TJ08-2402-2022
- 粉煤灰在高速公路基层中的应用
- 教学设计中的学科整合与跨学科学习
- 2024年广东省粤科金融集团有限公司招聘笔试参考题库含答案解析
- 消防设施维保投标方案(技术方案)
- 设备综合效率OEE统计表(使用)
- WATERS公司的UPLCTQD培训资料MS7校正课件
- 【超星尔雅学习通】航空与航天网课章节答案
- 2022年福州大学计算机科学与技术专业《操作系统》科目期末试卷B(有答案)
评论
0/150
提交评论