版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学试卷二元一次方程组易错压轴解答题试题(含答案)一、二元一次方程组易错压轴解答题1.已知关于、的方程组(1)若是方程组的解时,求的值;(2)当时,若方程组的解满足为非正数,为负数,化简:.2.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.3.我们用表示不大于x的最大整数,例如请解决下列问题:(1)=________.=________.(其中为圆周率);(2)已知x,y满足方程组求x,y的取值范围.4.已知关于x,y的方程满足方程组.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.5.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?6.为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。(1)求文具袋和圆规的单价:(2)学校准备购买文具袋20个,圆规若干,文具店给出两种优惠方案方案一:购买一个文具袋还送1个圆规方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.①设购买圆规m个(m≥20),则选择方案一的总费用为________
,选择方案二的总费用为________
。②若学校购买圆规100个,则选择哪种方案更合算?请说明理由________7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.8.如图,长青农产品加工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批原料甲运回工厂,经过加工后制成产品乙运到B地,其中原料甲和产品乙的重量都是正整数.已知铁路运价为2元/(吨·千米),公路运价为8元/(吨·千米).(1)若由A到B的两次运输中,原料甲比产品乙多9吨,工厂计划支出铁路运费超过5700元,公路运费不超过9680元.问购买原料甲有哪几种方案,分别是多少吨?(2)由于国家出台惠农政策,对运输农产品的车辆免收高速通行费,并给予一定的财政补贴,综合惠农政策后公路运输价格下降m(0<m<4且m为整数)元,若由A到B的两次运输中,铁路运费为5760元,公路运费为5100元,求m的值.9.如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).(1)顶点B的坐标为________,顶点D的坐标为________(用a或b表示);(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移________个单位长度,再向下平移________个单位长度的两次平移;②若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解________.10.如图,在平面直角坐标系中,长方形ABCD的边AB在y轴正半轴上,顶点A的坐标为(0,2),设顶点C的坐标为(a,b).(1)顶点B的坐标为________,顶点D的坐标为________(用a或b表示);(2)如果将一个点的横坐标作为x的值,纵坐标作为y的值,代入方程2x+3y=12成立,就说这个点的坐标是方程2x+3y=12的解.已知顶点B和D的坐标都是方程2x+3y=12的解,求a,b的值;(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,这次平移可以看成是先将长方形ABCD向右平移________个单位长度,再向下平移________个单位长度的两次平移;(4)若点P(m,n)是对角线BD上的一点,且点P的坐标是方程2x+3y=12的解,试说明平移后点P的对应点P′的坐标也是方程2x+3y=12的解.11.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“迥异数”.将一个“迥异数”个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为.例如:,对调个位数字与十位数字得到新两位数,新两位数与原两位数的和为,和与的商为,所以.根据以上定义,回答下列问题:(1)填空:①下列两位数:,,中,“迥异数”为________.②计算:________,________.(2)如果一个“迥异数”的十位数字是,个位数字是,且;另一个“迥异数”的十位数字是,个位数字是,且,请求出“迥异数”和.(3)如果一个“迥异数”的十位数字是,个位数字是,另一个“迥异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的所有的值________.12.如图,在平面直角坐标系中,把一个点的横、纵坐标都乘以同一个实数,然后将得到的点先向右平移个单位,再向上平移个单位,得到点(1)若,,,,则点坐标是________;(2)对正方形及其内部的每个点进行上述操作,得到正方形及其内部的点,其中点的对应点分别为.求;(3)在(2)的条件下,己知正方形内部的一个点经过上述操作后得到的对应点与点重合,求点的坐标.【参考答案】***试卷处理标记,请不要删除一、二元一次方程组易错压轴解答题1.(1)把{x=2y=1代入方程组,得{-7-n=3n+3m=1解得{n=-103m=11∴3m+n=11-10=1(2)当n=-2时,解方程组得解得;解析:(1)把代入方程组,得解得∴3m+n=11-10=1(2)当n=-2时,解方程组得解得;【解析】【分析】(1)将x=2,y=1代入方程组,即可得到m和n的值,计算得到3m+n的值即可;(2)将n=-2代入方程组,用含m的代数式表示x和y,根据x为非正数,y为负数表示出其范围,即可得到m的取值范围,继而化简得到答案即可。2.(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a=13,∴c=a+2=73;(2)当a=12时,12x+32y=52,解析:(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a=,∴c=a+2=;(2)当a=时,x+y=,化简得,x+3y=5,∴符合题意的整数解是:,,;(3)由题意,得ax+(a+1)y=a+2,整理得,a(x+y﹣1)=2﹣y①,∵x、y均为正整数,∴x+y﹣1是正整数,∵a是正整数,∴2﹣y是正整数,∴y=1,把y=1代入①得,ax=1,∴a=1,此时,a=1,b=2,c=3,方程的正整数解是.【解析】【分析】(1)由题意,得3a+a+1=a+2,解得a=,即可求得c=;(2)当a=时,方程为x+y=,即x+3y=5,根据方程即可求得;(3)由题意,得a(x+y﹣1)=2﹣y①,x、y均为正整数,则x+y﹣1是正整数,a是正整数,则2﹣y是正整数,从而求得y=1,把y=1代入①得,ax=1,即可求得a=1,此时方程的正整数解是.3.(1)3;-2(2)解方程组得:,则-1≤x<0,2≤y<3.【解析】【解答】(1)[π]=3,[2-π]=-2;故答案为:3;-2;【分析】(1)利用题中的新定义计算即可求解析:(1)3;-2(2)解方程组得:,则-1≤x<0,2≤y<3.【解析】【解答】(1)[π]=3,[2-π]=-2;故答案为:3;-2;【分析】(1)利用题中的新定义计算即可求出所求;(2)求出方程组的解得到[x]与[y]的值,即可确定出x与y的范围.4.(1)解:,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=解析:(1)解:,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)解:由题意得:,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)解:根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.【解析】【分析】(1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.5.(1)解:设应从乙处调x人到甲处,则乙处剩下(96-x)人,列方程得:解得:x=17(2)解:设调往甲处y人,甲处现有(220+y)人,则调往乙处(m-y)人,乙处现有(96+解析:(1)解:设应从乙处调x人到甲处,则乙处剩下(96-x)人,列方程得:解得:x=17(2)解:设调往甲处y人,甲处现有(220+y)人,则调往乙处(m-y)人,乙处现有(96+m-y)人,由此可得方程:∴∴∵,y<m,m,y均为整数当m=91时:(舍去)当m=92时:当m=93时:(舍去)当m=94时:(舍去)当m=95时:(舍去)当m=96时:当m=97时:(舍去)当m=98时:(舍去)当m=99时:(舍去)综上所述:当m=92时:则应调往甲处各86人,乙处6人当m=96时:则应调往甲处各89人,乙处7人答:(1)应从乙处调7人去甲处;(2)当m=92时:则应调往甲处各86人,乙处6人当m=96时:则应调往甲处各89人,乙处7人【解析】【分析】(1)设应从乙处调x人到甲处,则乙处剩下(96-x)人,根据甲处植树的人数是乙处植树人数的3倍得出方程,求出x的值;(2)设调往甲处y人,甲处现有(220+y)人,则调往乙处(m-y)人,乙处现有(96+m-y)人,此时甲处植树的人数是乙处植树人数的3倍,由此可得方程:.解此方程后即得调往乙处的人数,进而求出调往甲处多少人.6.(1)设文具袋的单价为x元,圆规的单价为y元依题意,得:{x+2y=212x+3y=39解得:
{x=15y=3答:文具袋的单价为15元,圆规的单价为3元。(2)(3m+解析:(1)设文具袋的单价为x元,圆规的单价为y元依题意,得:解得:
答:文具袋的单价为15元,圆规的单价为3元。(2)(3m+240)元;(2.4m+306)元;解:当m=100时,3m+240=540,2.4m+306=546,∵540<546,∴选择方案一更合算【解析】【解答】(1)①设购买圆规m个,选择方案一的总费用为:20×15+3(m-20)=3m+240(元);选择方案二的总费用为:20×15+10×3+3×80%(m-10)=2.4m+306(元)故答案为:(3m+240)元;(2.4m+306)元【分析】(1)设文具袋的单价为x元,圆规的单价为y元,总费用=文具袋数量×单价+圆规数量×单价,据此在两种情况下分别列方程,组成方程组求解即可;(2)①设购买圆规m个,因为购买一个文具袋还送1个圆规,则购买20个文具袋送20个圆规,实际花钱购买的圆规有m-20个,根据“总费用=文具袋数量×单价+圆规数量×单价”列式即可;文具袋的费用不变,为20×15,圆规的费用分两部分,其中10个按原价,费用为10×3,超过10个的部分数量为m-10,享受优惠价,费用为3×80%(m-10),几项费用相加即是总费用;②
把m=100,代入上述两种方案,分别计算费用,比较费用的大小,若费用低就更合算。7.(1)解:设参加春游的学生共x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:春游学生共240人,原计划租45座客车5辆(2)解:租45座客车:240÷4解析:(1)解:设参加春游的学生共x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:春游学生共240人,原计划租45座客车5辆(2)解:租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算【解析】【分析】(1)设参加春游的学生共x人,原计划租用45座客车y辆,
本题的等量关系为:45×45座客车辆数+15=学生总数,60×(45座客车辆数-1)=学生总数,据此列方程组求出x,y即可求解;(2)根据总人数÷每辆车的座位数=车辆数,分别计算单独租用两种车需要的车辆数,再分别计算两种租车方案下的租金,比较租金即可得出那辆车更合算。8.(1)解:设运送乙产品x吨,则运送甲产品(x+9)吨,,解得,11.8<x≤1457∵x为整数,∴x=12,13,14,∴x+9为21,22,23,∴购买原料甲有三种方案,分解析:(1)解:设运送乙产品x吨,则运送甲产品(x+9)吨,,解得,11.8<x≤14∵x为整数,∴x=12,13,14,∴x+9为21,22,23,∴购买原料甲有三种方案,分别是21吨、22吨、23吨;(2)解:设运送乙产品x吨,则运送甲产品(x+9)吨,,解得,,答:m的值是3.【解析】【分析】(1)根据工厂计划支出铁路运费超过5700元,公路运费不超过9680元列出相应的不等式组,从而可以求得x的取值范围,本题得以解决;(2)根据由A到B的两次运输中,铁路运费为5760元,公路运费为5100元得到相应的方程组,从而可以求得m的值.9.(1)(0,b);(a,2)(2)解:∵顶点B和D的坐标都是方程2x+3y=12的解,∴{3b=122a+6=12,解得{a=3b=4.(3)3;2;点P(m,n)平移后的解析:(1)(0,b);(a,2)(2)解:∵顶点B和D的坐标都是方程2x+3y=12的解,∴,解得.(3)3;2;点P(m,n)平移后的坐标为(m+3,n﹣2),∵点P的坐标是方程2x+3y=12的解,∴2m+3n=12,将P′的坐标代入方程2x+3y=12,2(m+3)+3(n﹣2)=2m+3n=12,∴P′的坐标也是方程2x+3y=12的解.【解析】【解答】(1)由A的坐标为(0,2),C的坐标为(a,b),以及长方形ABCD的性质可知,AB=b,AD=a,则B(0,b),D(a,2),故答案为(0,b),(a,2);(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,①这次平移可以看成是先将长方形ABCD向右平移3个单位长度,再向下平移2个单位长度的两次平移;【分析】(1)由题意,结合长方形的性质可得点B和点D的坐标;(2)因为点B和D的坐标都是方程2x+3y=12的解,则将B、D两点坐标带入方程2x+3y=12,得到方程组,求解即可得到答案.(3)①本题考查平移,利用平移的性质可以得到答案;②将点P的坐标和P′的坐标代入方程2x+3y=12,若两者相等,即可证明.10.(1)(0,b);(a,2)(2)解:∵顶点B和D的坐标都是方程2x+3y=12的解,∴{3b=122a+6=12,解得{a=3b=4.(3)3;2(4)解:点P(m,n解析:(1)(0,b);(a,2)(2)解:∵顶点B和D的坐标都是方程2x+3y=12的解,∴,解得.(3)3;2(4)解:点P(m,n)平移后的坐标为(m+3,n﹣2),∵点P的坐标是方程2x+3y=12的解,∴2m+3n=12,将P′的坐标代入方程2x+3y=12,2(m+3)+3(n﹣2)=2m+3n=12,∴P′的坐标也是方程2x+3y=12的解.【解析】【解答】解:(1)由A的坐标为(0,2),C的坐标为(a,b),以及长方形ABCD的性质可知,AB=b,AD=a,则B(0,b),D(a,2),故答案为(0,b),(a,2);(3)在(2)的条件下,平移长方形ABCD,使点B移动到点D,得到新的长方形EDFG,这次平移可以看成是先将长方形ABCD向右平移3个单位长度,再向下平移2个单位长度的两次平移;故答案为3,2;【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务部门内部审计工作总结报告
- 工人工作流程培训课件
- 工人安全培训通知课件
- 青年岗位安全生产先进事迹汇编
- 休克的观察和护理
- 巡视整改监督培训课件
- 电商售后服务流程与客户满意度提升
- 护理质量检查记录
- 2026届佛山市重点中学生物高一第一学期期末质量检测模拟试题含解析
- 嵌体口腔知识培训课件
- 税局查合作协议书
- 开发矿山协议书
- 2025年井下胶轮车司机(高级)职业技能《理论知识》真题卷(新版解析)
- 2025年昆明市呈贡区城市投资集团有限公司及下属子公司第二批招聘(11人)备考笔试试题及答案解析
- 未来五年动车组行业跨境出海战略分析研究报告
- 化疗与静疗相关课件
- 管带机(输送机)技术协议二
- 初中英语听说能力培养策略研究教学研究课题报告
- 智能健康监测系统在公共卫生中的应用
- 手术室压疮护理
- NB-T+10131-2019水电工程水库区工程地质勘察规程
评论
0/150
提交评论