七年级下册期末几何压轴题数学综合测试卷及答案(一)培优试题_第1页
七年级下册期末几何压轴题数学综合测试卷及答案(一)培优试题_第2页
七年级下册期末几何压轴题数学综合测试卷及答案(一)培优试题_第3页
七年级下册期末几何压轴题数学综合测试卷及答案(一)培优试题_第4页
七年级下册期末几何压轴题数学综合测试卷及答案(一)培优试题_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、解答题1.如图,在平面直角坐标系中,已知,将线段平移至,点在轴正半轴上,,且.连接,,,.(1)写出点的坐标为;点的坐标为;(2)当的面积是的面积的3倍时,求点的坐标;(3)设,,,判断、、之间的数量关系,并说明理由.2.如图1,//,点、分别在、上,点在直线、之间,且.(1)求的值;(2)如图2,直线分别交、的角平分线于点、,直接写出的值;(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.3.如图1,点在直线、之间,且.(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).4.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.(1)若点,,都在点的右侧.①求的度数;②若,求的度数.(不能使用“三角形的内角和是”直接解题)(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.5.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)6.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.7.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)的值为______,的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.①判断这三个数中哪些与“模二相加不变”,并说明理由;②与“模二相加不变”的两位数有______个8.阅读型综合题对于实数我们定义一种新运算(其中均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为,其中叫做线性数的一个数对.若实数都取正整数,我们称这样的线性数为正格线性数,这时的叫做正格线性数的正格数对.(1)若,则,;(2)已知,.若正格线性数,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.9.数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人感觉十分惊奇,请华罗庚给大家解读其中的奥秘.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:①,又,,∴能确定59319的立方根是个两位数.②∵59319的个位数是9,又,∴能确定59319的立方根的个位数是9.③如果划去59319后面的三位319得到数59,而,则,可得,由此能确定59319的立方根的十位数是3因此59319的立方根是39.(1)现在换一个数195112,按这种方法求立方根,请完成下列填空.①它的立方根是_______位数.②它的立方根的个位数是_______.③它的立方根的十位数是__________.④195112的立方根是________.(2)请直接填写结果:①________.②________.10.观察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果.11.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙,你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)我们知道,,那么,请你猜想:59319的立方根是_______位数(2)在自然数1到9这九个数字中,________,________,________.猜想:59319的个位数字是9,则59319的立方根的个位数字是________.(3)如果划去59319后面的三位“319”得到数59,而,,由此可确定59319的立方根的十位数字是________,因此59319的立方根是________.(4)现在换一个数103823,你能按这种方法得出它的立方根吗?12.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.定义:如果(a>0,a≠1,N>0),那么b叫做以a为底N的对数,记作.例如:因为,所以;因为,所以.根据“对数”运算的定义,回答下列问题:(1)填空:,.(2)如果,求m的值.(3)对于“对数”运算,小明同学认为有“(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.13.如图,在平面直角坐标系中,,CD//x轴,CD=AB.(1)求点D的坐标:(2)四边形OCDB的面积四边形OCDB;(3)在y轴上是否存在点P,使△PAB=四边形OCDB;若存在,求出点P的坐标,若不存在,请说明理由.14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.(1)当时,的度数是_______;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点运动到使时,请直接写出的度数.15.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.16.在平面直角坐标系中,对于任意两点,,如果,则称与互为“距点”.例如:点,点,由,可得点与互为“距点”.(1)在点,,中,原点的“距点”是_____(填字母);(2)已知点,点,过点作平行于轴的直线.①当时,直线上点的“距点”的坐标为_____;②若直线上存在点的“点”,求的取值范围.(3)已知点,,,的半径为,若在线段上存在点,在上存在点,使得点与点互为“距点”,直接写出的取值范围.17.在平面直角坐标系中描出下列两组点,分别将每组里的点用线段依次连接起来.第一组:、;第二组:、.(1)线段与线段的位置关系是;(2)在(1)的条件下,线段、分别与轴交于点,.若点为射线上一动点(不与点,重合).①当点在线段上运动时,连接、,补全图形,用等式表示、、之间的数量关系,并证明.②当与面积相等时,求点的坐标.18.如图,在平面直角坐标系xOy中,对于任意两点A(x1,y1)与B(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点A与点B的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点A与点B的“非常距离”为|y1﹣y2|.(1)填空:已知点A(3,6)与点B(5,2),则点A与点B的“非常距离”为;(2)已知点C(﹣1,2),点D为y轴上的一个动点.①若点C与点D的“非常距离”为2,求点D的坐标;②直接写出点C与点D的“非常距离”的最小值.19.如图,和的度数满足方程组,且,.(1)用解方程的方法求和的度数;(2)求的度数.20.如图,已知,,且满足.(1)求、两点的坐标;(2)点在线段上,、满足,点在轴负半轴上,连交轴的负半轴于点,且,求点的坐标;(3)平移直线,交轴正半轴于,交轴于,为直线上第三象限内的点,过作轴于,若,且,求点的坐标.21.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B2AB,B1C2BC,C1A2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B2AB,B1C2BC,C1A2CA,根据等高两三角形的面积比等于底之比,所以2S△ABC2a,由此继续推理,从而解决了这个问题.(1)直接写出S1(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值.22.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,有50多人.如果两个班都以班为单位分别购票,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.23.甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b千米/小时.(1)A、B两地的距离可以表示为千米(用含a,b的代数式表示);(2)甲从A到B所用的时间是:小时(用含a,b的代数式表示);乙从B到A所用的时间是:小时(用含a,b的代数式表示).(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少?24.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.25.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.26.某体育拓展中心的门票每张10元,一次性使用考虑到人们的不同需求,也为了吸引更多的顾客,该拓展中心除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A、B两类:A类年票每张120元,持票者可不限次进入中心,且无需再购买门票;B类年票每张60元,持票者进入中心时,需再购买门票,每次2元.(1)小丽计划在一年中花费80元在该中心的门票上,如果只能选择一种购买门票的方式,她怎样购票比较合算?(2)小亮每年进入该中心的次数约20次,他采取哪种购票方式比较合算?(3)小明根据自己进入拓展中心的次数,购买了A类年票,请问他一年中进入该中心不低于多少次?27.如图①,在平直角坐标系中,△ABO的三个顶点为A(a,b),B(﹣a,3b),O(0,0),且满足|b﹣2|=0,线段AB与y轴交于点C.(1)求出A,B两点的坐标;(2)求出△ABO的面积;(3)如图②,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记△的面积为S,若24<S<32,求点的横坐标的取值范围.28.阅读下列材料:问题:已知x﹣y=2,且x>1,y<0解:∵x﹣y=2.∴x=y+2,又∵x>1∴y+2>1∴y>﹣1又∵y<0∴﹣1<y<0①∴﹣1+2<y+2<0+2即1<x<2②①+②得﹣1+1<x+y<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>﹣1,y<0,则x的取值范围是;x+y的取值范围是;(2)已知x﹣y=a,且x<﹣b,y>2b,根据上述做法得到-2<3x-y<10,求a、b的值.29.中国传统节日“端午节”期间,某商场开展了“欢度端午,回馈顾客”的让利促销活动,对部分品牌的粽子进行了打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分别为多少元?(2)在商场让利促销活动期间,某敬老院准备购买甲、乙两种品牌粽子共40盒,总费用不超过2300元,问敬老院最多可购买多少盒乙品牌粽子?30.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应,与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1),;(2)点D的坐标为或;(3)之间的数量关系,或,理由见解析.【分析】(1)由二次根式成立的条件可得a和b的值,由平移的性质确定BC∥OA,且BC=OA,可得结论;(2)分点D在线段OA和在OA延长线两种情况进行计算;(3)分点D在线段OA上时,α+β=θ和在OA延长线α-β=θ两种情况进行计算;【详解】解:(1)∵,∴a=2,b=3,∴点C的坐标为(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x轴,∴B(6,3),故答案为:,;(2)设点D的坐标为∵△ODC的面积是△ABD的面积的3倍∴∴①如图1,当点D在线段OA上时,由,得解得∴点D的坐标为②如图2,当点D在OA得延长线上时,由,得解得∴点D的坐标为综上,点D的坐标为或.(3)①如图1,当点D在线段OA上时,过点D作DE∥AB,与CB交于点E.由平移知OC∥AB,∴DE∥OC∴又∴.②如图2,当点D在OA得延长线上时,过点D作DE∥AB,与CB得延长线交于点E由平移知OC∥AB,∴DE∥OC∴又∴.综上,之间的数量关系,或.【点睛】此题考查四边形和三角形的综合题,点的坐标和三角形面积的计算方法,平移得性质,平行线的性质和判定,解题的关键是分点D在线段OA上,和OA延长线上两种情况.2.(1);(2)的值为40°;(3).【分析】(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得即可得关于n的方程,计算可求解n值.【详解】证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO内,∴,∵∴∴即∴解得.经检验,符合题意,故答案为:.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.3.(1)见解析;(2)10°;(3)【分析】(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HE∥CD,设由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出.【详解】(1)过点E作EF∥CD,如图,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)过点E作HE∥CD,如图,设由(1)得AB∥CD,则AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)过点N作NP∥CD,过点M作QM∥CD,如图,由(1)得AB∥CD,则NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.4.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.5.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;综上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.6.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(1)1011,1101;(2)①12,65,97,见解析,②38【分析】(1)根据“模二数”的定义计算即可;(2)①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数【详解】解:(1),故答案为:①,,与满足“模二相加不变”.,,,与不满足“模二相加不变”.,,,与满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;当a为偶数,b为偶数时,∴∴与满足“模二相加不变”有12个(28、48、68不符合)当a为偶数,b为奇数时,∴∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个当a为奇数,b为奇数时,∴∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合当a为奇数,b为偶数时,∴∴与满足“模二相加不变”有16个,(18、38、58不符合)当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.8.(1)5,3;(2)有正格数对,正格数对为【分析】(1)根据定义,直接代入求解即可;(2)将代入求出b的值,再将代入,表示出kx,再根据题干分析即可.【详解】解:(1)∵∴5,3故答案为:5,3;(2)有正格数对.将代入,得出,,解得,,∴,则∴∵,为正整数且为整数∴,,,∴正格数对为:.【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.9.(1)①两;②8;③5;④58;(2)①24;②56.【分析】(1)①根据例题进行推理得出答案;②根据例题进行推理得出答案;③根据例题进行推理得出答案;④根据②③得出答案;(2)①先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论;②先判断它的立方根是几位数,再判断个位、十位上的数字,即可得到结论.【详解】(1)①,,∴,∴能确定195112的立方根是一个两位数,故答案为:两;②∵195112的个位数字是2,又∵,∴能确定195112的个位数字是8,故答案为:8;③如果划去195112后面三位112得到数195,而,∴,可得,由此能确定195112的立方根的十位数是5,故答案为:5;④根据②③可得:195112的立方根是58,故答案为:58;(2)①13824的立方根是两位数,立方根的个位数是4,十位数是2,∴13824的立方根是24,故答案为:24;②175616的立方根是两位数,立方根的个位数是6,十位数是5,∴175616的立方根是56,故答案为:56.【点睛】此题考查立方根的性质,一个数的立方数的特点,正确理解题意仿照例题解题的能力,掌握一个数的立方数的特点是解题的关键.10.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案为:(1)x7-1;(2)xn+1-1;(3).【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.11.(1)两;(2)125,343,729,9;(3)3,39;(4)47【分析】(1)根据夹逼法和立方根的定义进行解答;(2)先分别求得1至9中奇数的立方,然后根据末位数字是几进行判断即可;(3)先利用(2)中的方法判断出个数数字,然后再利用夹逼法判断出十位数字即可;(4)利用(3)中的方法确定出个位数字和十位数字即可.【详解】(1)∵1000<59319<1000000,∴59319的立方根是两位数;(2)∵125,343,729,∴59319的个位数字是9,则59319的立方根的个位数字是9;(3)∵,且59319的立方根是两位数,∴59319的立方根的十位数字是3,又∵59319的立方根的个位数字是9,∴59319的立方根是39;(4)∵1000<103823<1000000,∴103823的立方根是两位数;∵125,343,729,∴103823的个位数字是3,则103823的立方根的个位数字是7;∵,且103823的立方根是两位数,∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.12.(1)1,4;(2)m=10;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据ax•ay=ax+y知ax+y=M•N,继而得logaMN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数).∵ax•ay=,∴=M•N,∴logaMN=x+y,即logaMN=logaM+logaN.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.13.(1)(2)7(3)点的坐标为或【详解】试题分析:⑴抓住∥轴,可以推出纵坐标相等,而是横坐标之差的绝对值,以此可以求出点的坐标,根据图示要舍去一种情况.⑵四边形是梯形,根据点的坐标可以求出此梯形的上、下底和高,面积可求.⑶存在性问题可以先假设存在,在假设的基础上以△=四边形为等量关系建立方程,以此来探讨在轴上是否存在着符合条件的点.试题解析:⑴.∵∥轴,∴纵坐标相等;∵∴点的纵坐标也为2.设点的坐标为,则.又,且,∴,解得:.由于点在第一象限,所以,所以的坐标为.⑵.∵∥轴,且∴∴四边形=.⑶.假设在轴上存在点,使△=四边形.设的坐标为,则,而∴△=.∵△=四边形,四边形∴,解得;.均符合题意.∴在轴上存在点,使△=四边形.点的坐标为或.14.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不变,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.15.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析.【分析】(1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可.【详解】解:(1)∵将三角形OAB沿x轴负方向平移,∴BC∥x轴,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案为:(-2,0);(-3,0).(2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.16.(1);(2)①;②;(3).【分析】(1)根据定义判断即可;(2)①设直线上与点的“距点”的点的坐标为(a,3),根据定义列出关于a的方程,解方程即可;②点坐标为,直线上点的纵坐标为b,由题意得,转化为不等式组,解不等式组即可.(3)分类讨论,分别取P与点M重合、P与点N重合讨论。当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),根据定义列出关于m的绝对值方程,解方程,取较小的值;当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),根据定义列出关于m的绝对值方程,解方程,取较大的值,问题得解.【详解】解:(1)∵,O(0,0),∴,∴点D与原点互为“距点”;∵,O(0,0),∴,所以点D与原点互为“距点”;∵,O(0,0),∴,所以点D与原点互为“距点”;故答案为:;(2)①设直线上与点的“距点”的点的坐标为(a,3),则,解得a=2故答案为(2,3);②如图,点坐标为,直线上点的纵坐标为b,设直线上点的坐标为(c,b)则:,∴,∴,∴,即的取值范围是;(3)如图(1),当点P与点M重合时,设⊙C左侧与x轴交于点Q,则点Q的坐标是(m-,0),∵点P与点Q互为“5-距点",P(1,2),∴,解得:,;∵,∴取.当点P与点N重合时,设⊙C右侧与x轴交于点Q,则点Q的坐标是(m+,0),∵点P与点Q互为“5-距点",则P(3,2),∴,解得:,,∵∴取∴.【点睛】本题为新定义题型,关键要读懂题目中给出的新概念,建立模型,并结合所学知识解决即可.17.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,证明见解析;②点M的坐标为(0,)或(0,).【分析】(1)根据两点的纵坐标相等,连线平行x轴进行判断即可;(2)①过点M作MN∥AC,运用平行线的判定和性质即可;②设M(0,m),分两种情况:(i)当点M在线段OB上时,(ii)当点M在线段OB的延长线上时,分别运用三角形面积公式进行计算即可.【详解】解:(1)∵A(−3,3)、C(4,3),∴AC∥x轴,∵D(−2,−1)、E(2,−1),∴DE∥x轴,∴AC∥DE;(2)①如图,∠CAM+∠MDE=∠AMD.理由如下:过点M作MN∥AC,∵MN∥AC(作图),∴∠CAM=∠AMN(两直线平行,内错角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推论),∴∠MDE=∠NMD(两直线平行,内错角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代换).②由题意,得:AC=7,DE=4,设M(0,m),(i)当点M在线段OB上时,BM=3−m,FM=m+1,∴S△ACM=AC•BM=×7×(3−m)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)当点M在线段OB的延长线上时,BM=m−3,FM=m+1,∴S△ACM=AC•BM=×7×(m−3)=,S△DEM=DE•FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);综上所述,点M的坐标为(0,)或(0,).【点睛】本题考查了三角形面积,平行坐标轴的直线上的点的坐标的特征,平行线的判定和性质等,解题关键是运用数形结合思想和分类讨论思想.18.(1)4;(2)①或;②1.【分析】(1)依照题意,分别求出和,比较大小,得出答案,(2)点在轴上所以横坐标为0,,所以点和点的纵坐标差的绝对值应为2,可得点坐标,(3)已知点和点的横坐标差的绝对值恒等于1,纵坐标差的绝对是个动点问题,取值范围和1比较,可得出最小值为1.【详解】解:(1),,,,点与点的“非常距离”为4.故答案为:4.(2)①点在轴上所以横坐标为0,点和点的纵坐标差的绝对值应为2,设点的纵坐标为,,解得或,点的坐标为或,故点的坐标为或;②最小值为1,理由为已知点和点的横坐标差的绝对值恒等于1,,设点的纵坐标为,当时,,可得点与点的“非常距离”为1,当或时,,可得点与点的“非常距离”为.,点与点的“非常距离”的最小值为1,故点与点的“非常距离”的最小值为1.【点睛】本题考查了直角坐标系坐标结合绝对值的应用,是新定义问题,难点在于第三问的动点位置取值范围讨论,需要学生根据题意正确讨论.19.(1),;(2)【分析】(1)把和当做未知数,利用加减消元法解二元一次方程组即可;(2)先证明AB∥EF,则可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度数即可求解.【详解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【点睛】本题考查了平行线的判定和性质,解二元一次方程组,解答本题的关键是明确题意,利用数形结合的思想解答.20.(1),;(2);(3)【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由列方程组,求出点C坐标,进而由△ACD面积求出D点坐标.(3)由平行线间距离相等得到,继而求出E点坐标,同理求出F点坐标,再由GE=12求出G点坐标,根据求出PG的长即可求P点坐标.【详解】解:(1),∴,,,,,,,(2)由∴,,,如图1,连,作轴,轴,,即,,,而,,,,(3)如图2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.21.(1)19a;(2)315;(3).【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC的面积;(3)设S△BPF=m,S△APE=n,依题意,得S△APF=S△APC=m,S△BPC=S△BPF=m.得出,从而求解.【详解】解:(1)连接A1C,∵B1C=2BC,A1B=2AB,∴,,,∴,∴,同理可得出:,∴S1=6a+6a+6a+a=19a;故答案为:19a;(2)过点作于点,设,,;,.,即.同理,...①,,.②由①②,得,.(3)设,,如图所示.依题意,得,..,.,,...【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.22.(1)七(1)班有47人,七(2)班有51人;(2)如果两个班联合起来买票,不可以买单价为9元的票,省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付1078元可知:可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x人,七(2)班有y人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。【详解】解:(1)∵两个班联合起来,作为一个团体购票,则需付1078元有∵可得票价不是9元,所以两个班的总人数没有超过100人,∴设七(1)班有x人,七(2)班有y人,依题意得:∴七(1)班有47人,七(2)班有51人(2)因为47+51=98<100∴如果两个班联合起来买票,不可以买单价为9元的票∴省钱的方法,可以买101张票,多余的作废即可。可省:【点睛】熟练掌握二元一次方程组的实际问题是解题的关键。23.(1)2(a+b);(2)(2+);(2+);(3)36.【分析】(1)根据两地间的距离=两人的速度之和×第一次相遇所需时间,即可得出结论;(2)利用时间=路程÷速度结合2小时后第一次相遇,即可得出结论;(3)设AB两地的距离为S千米,根据路程=速度×时间,即可得出关于(a+b),S的二元一次方程组(此处将a+b当成一个整体),解之即可得出结论.【详解】(1)A、B两地的距离可以表示为2(a+b)千米.故答案为:2(a+b).(2)甲乙相遇时,甲已经走了千米,乙已经走了千米,根据相遇后他们的速度都提高了1千米/小时,得甲还需小时到达B地,乙还需小时到达A地,所以甲从A到B所用的时间为(2+)小时,乙从B到A所用的时间为(2+)小时.故答案为:(2+);(2+).(3)设AB两地的距离为S千米,3小时36分钟=小时.依题意,得:,令x=a+b,则原方程变形为,解得:.答:AB两地的距离为36千米.【点睛】本题考查了列代数式以及二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.(1)7441不是“诚勤数”;5463是“诚勤数”;(2)满足条件的A为:2314或5005或3250.【分析】(1)直接利用定义进行验证,即可得到答案;(2)由题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论的进行分析,即可得到答案.【详解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“诚勤数”;在5436中,∵5+4=6+3=9,∴5463是“诚勤数”;(2)根据题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),且,,∴这个四位数为:,∵,,∴,∵这个四位数是13的倍数,∴必须是13的倍数;∵,,∴在时,取到最大值60,∴可以为:2、15、28、41、54,∵,则是3的倍数,∴或,∴或;①当时,,∵,且a为非负整数,∴或,∴或,若,则,此时;若,则,此时;②当时,,∵,且a为非负整数,∴是3的倍数,且,∴,∴,则,∴;综合上述,满足条件的A为:2314或5005或3250.【点睛】本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论的思想进行解题.25.(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备;(3)最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【分析】(1)由一台A型设备的价格是x万元,一台乙型设备的价格是y万元,根据题意得等量关系:购买一台甲型设备-购买一台乙型设备=2万元,购买4台乙型设备-购买3台甲型设备=2万元,根据等量关系,列出方程组,再解即可;(2)设购买甲型设备m台,则购买乙型设备(10-m)台,由题意得不等关系:购买甲型设备的花费+购买乙型设备的花费≤91万元,根据不等关系列出不等式,再解即可;(3)由题意可得:甲型设备处理污水量+乙型设备处理污水量≥2750吨,根据不等关系,列出不等式,再解即可.【详解】(1)依题意,得:,解得:.(2)设该治污公司购进m台甲型设备,则购进(10﹣m)台乙型设备,依题意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m为非零整数,∴m=0,1,2,3,4,5,∴该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备.(3)依题意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.当m=4时,总费用为10×4+8×6=88(万元);当m=5时,总费用为10×5+8×5=90(万元).∵88<90,∴最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程(组)和不等式.26.(1)应该购买B类年票,理由见解析;(2)应该购买B类年票,理由见解析;(3)小明一年中进入拓展中心不低于30次【分析】(1)因为80元小于120元,故无法购买A类年票,继而分别讨论直接购票与购买B类年票,这两种方式何者次数更多即可.(2)本题根据进入中心的次数,分别计算小亮直接购票、购买A类年票

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论