版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省许昌市示范初中2026届数学高二上期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线l:的倾斜角为()A. B.C. D.2.已知命题p:,总有,则为()A.,使得 B.,使得C.,总有 D.,总有3.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.4.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数5.已知集合,则()A. B.C. D.6.设函数的导函数是,若,则()A. B.C. D.7.已知点,,则经过点且经过线段AB的中点的直线方程为()A. B.C. D.8.已知空间向量,,,则()A.4 B.-4C.0 D.29.椭圆的左右焦点分别为,是上一点,轴,,则椭圆的离心率等于()A. B.C. D.10.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则11.若数列满足,则()A. B.C. D.12.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.8二、填空题:本题共4小题,每小题5分,共20分。13.已知点在圆上,点在圆上,则的最小值是__________14.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______15.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.16.已知双曲线的左,右焦点分别为,,右焦点到一条渐近线的距离是,则其离心率的值是______;若点P是双曲线C上一点,满足,,则双曲线C的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在数列中,,,且对任意的,都有.(1)数列的通项公式;(2)设数列,求数列的前项和.18.(12分)已知为直角梯形,,平面,,.(1)求证:平面;(2)求平面与平面所成锐二面角的余弦值.19.(12分)已知函数(1)当时,求的单调区间;(2)当时,证明:存在最大值,且恒成立.20.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)记,求数列的前项和21.(12分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离22.(10分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.2、B【解析】由含有一个量词的命题的否定的定义求解.【详解】因为命题p:,总有是全称量词命题,所以其否定为存在量词命题,即,使得,故选:B3、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D4、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.5、B【解析】先求得集合A,再根据集合的交集运算可得选项.【详解】解:因为,所以故选:B.6、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.7、C【解析】求AB的中点坐标,根据直线所过的两点坐标求直线方程即可.【详解】由已知,AB中点为,又,∴所求直线斜率为,故直线方程为,即故选:C.8、A【解析】根据空间向量平行求出x,y,进而求得答案.【详解】因为,所以存在实数,使得,则.故选:A.9、A【解析】在中结合已知条件,用焦距2c表示、,再利用椭圆定义计算作答.【详解】令椭圆的半焦距为c,因是上一点,轴,,在中,,,由椭圆定义知,则,所以椭圆的离心率等于.故选:A10、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.11、C【解析】利用前项积与通项的关系可求得结果.【详解】由已知可得.故选:C.12、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、3-5【解析】因为点在圆上,点在圆上,故两圆的圆心分别为半径分别为和两圆的圆心距为,故两圆相离,则最小值为,故答案为.考点:1、圆的方程及圆的几何性质;2、两点间的距离公式及最值问题.【方法点晴】本题主要考查圆的方程及几何性质、两点间的距离公式及最值问题的应用,属于难题.解决解析几何的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题就是利用圆的几何性质,将的最小值转化两圆心的距离减半径解答的.14、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:415、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:16、①.##1.5②.【解析】求得焦点到渐近线的距离可得,计算即可求得离心率,由双曲线的定义可求得,计算即可得出结果.【详解】双曲线的渐近线方程为,即,焦点到渐近线的距离为,又,,,,.双曲线上任意一点到两焦点距离之差的绝对值为,即,,即,解得:,由,解得:,.双曲线C的方程为.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由递推式可得,根据等比数列的定义写出通项公式,再由累加法求的通项公式;(2)由(1)可得,再应用裂项相消法求前项和【小问1详解】由可得:,又,,∴,则数列是首项为2,公比为2的等比数列,∴.∴.【小问2详解】∵,∴∴.18、(1)证明见解析;(2).【解析】建立空间直角坐标系.(1)方法一,利用向量的方法,通过计算,,证得,,由此证得平面.方法二,利用几何法,通过平面证得,结合证得,由此证得平面.(2)通过平面和平面的法向量,计算出平面与平面所成锐二面角的余弦值.【详解】如图,以为原点建立空间直角坐标系,可得,,,.(1)证明法一:因为,,,所以,,所以,,,平面,平面,所以平面.证明法二:因为平面,平面,所以,又因为,即,,平面,平面,所以平面.(2)由(1)知平面的一个法向量,设平面的法向量,又,,且所以所以平面的一个法向量为,所以,所以平面与平面所成锐二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)的单增区间为,;单减区间为,,;(2)证明见解析.【解析】(1)先求出函数的定义域,求出,由,结合函数的定义域可得出函数的单调区间.(2)当时,定义域R,求出,从而得出单调区间,由当时,,当时,,以及极值点与2的大小关系可得出当时,函数有最大值,然后再证明即可.【详解】解:(1)定义域,可得且且,,可得且3无0无0减无减增无增减所以,的单增区间为,;单减区间为,,.(2)当时,定义域R因为,当时,,当时,,所以的最大值在时取得;由,即,得由,得,或由,得所以在上单调递减,在上单调递增,在上单调递减.当时,,且,由所以当时,函数有最大值.所以,因为,所以,设,则所以化为由,则,则,所以所以20、(1)(2)【解析】(1)结合作差法可直接求解;(2)由错位相减法可直接求解.【小问1详解】当时,;当时,,当时,满足上式,所以;【小问2详解】由(1)知,所以①,②,①-②得,所以.21、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因为ABCD是正方形,所以DA⊥DC.以D为坐标原点,所在方向分别为轴的正方向建立空间直角坐标系,则A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(2,0,1),所以,,设平面BEF的法向量,因为,所以-2x-2y+2z=0,-2y+z=0,令y=1,则=(1,1,2),又因为=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病远程诊疗数据质量控制策略
- 心血管伞形试验:液体活检入组策略优化
- 心脏移植术后免疫抑制方案的优化策略
- 心脏离子通道病的家系遗传咨询策略
- 心脏淀粉样病合并心衰的综合治疗策略
- 心肌缺血再灌注损伤纤维化:个体化保护策略
- 心肌梗死后瘢痕组织重塑策略
- 微创白内障手术的视觉质量与传统术式的对照研究
- 微创手术后神经功能缺损的修复策略
- 循证护理在术后DVT预防中的应用效果
- 2025年及未来5年市场数据中国氢氧化钾行业市场调研分析及投资前景预测报告
- 杨辉三角的性质与应用课件-高二下学期数学人教A版选择性
- (新教材)2025年人教版八年级上册生物期末复习全册知识点梳理
- 教科版(2017)六年级上册科学知识点文档
- DB44 07∕T 70-2021 地理标志产品 新会陈皮
- DB54-T 0311-2024 西藏自治区居住区供配电设施建设及验收标准
- 2025年国家开放大学《农业经济学》期末考试备考试题及答案解析
- 2025蚌埠市城市投资控股集团有限公司所属公司招聘9人笔试备考题库及答案解析
- 2025年新版劳动合同模板(北京版)
- 2025年事业单位工勤技能-河南-河南防疫员三级(高级工)历年参考题库含答案解析
- 数智企业经营沙盘模拟实训教程-人力规则
评论
0/150
提交评论