2026届山东省青州市数学高一上期末检测试题含解析_第1页
2026届山东省青州市数学高一上期末检测试题含解析_第2页
2026届山东省青州市数学高一上期末检测试题含解析_第3页
2026届山东省青州市数学高一上期末检测试题含解析_第4页
2026届山东省青州市数学高一上期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省青州市数学高一上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的值域为,那么的取值范围是()A. B.C. D.2.设函数,若,则的取值范围为A. B.C. D.3.下列函数既是奇函数又是周期为π的函数是()A. B.C. D.4.已知函数,若,,互不相等,且,则的取值范围是()A. B.C. D.5.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.6.如果不等式成立的充分不必要条件是,则实数a的取值范围是()A. B.C.或 D.或7.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-18.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条9.著名数学家、物理学家牛顿曾提出:物体在空气中冷却,如果物体的初始温度为,空气温度为,则分钟后物体的温度(单位:)满足:.若常数,空气温度为,某物体的温度从下降到,大约需要的时间为()(参考数据:)A.分钟 B.分钟C.分钟 D.分钟10.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数在上单调递减,则___________.12.《三十六计》是中国古代兵法策略,是中国文化的瑰宝.“分离参数法”就是《三十六计》中的“调虎离山”之计在数学上的应用,例如,已知含参数的方程有解的问题,我们可分离出参数(调),将方程化为,根据的值域,求出的范围,继而求出的取值范围,已知,若关于x的方程有解,则实数的取值范围为___________.13.已知,则___________.14.已知,则函数的最大值为___________,最小值为___________.15.已知函数的图象如图所示,则函数的解析式为__________.16.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数图象上的一个最高点的坐标为,此点到相邻最低点间的曲线与轴交于点(1)求函数的解析式;(2)用“五点法”画出(1)中函数在上的图象.18.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.19.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围20.已知直线和点,设过点且与平行的直线为.(1)求直线的方程;(2)求点关于直线的对称点21.已知函数(Ⅰ)求的最小正周期及对称轴方程;(Ⅱ)当时,求函数的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先求得时的值域,再根据题意,当时,值域最小需满足,分析整理,即可得结果.【详解】当,,所以当时,,因为的值域为R,所以当时,值域最小需满足所以,解得,故选:C【点睛】本题考查已知函数值域求参数问题,解题要点在于,根据时的值域,可得时的值域,结合一次函数的图像与性质,即可求得结果,考查分析理解,计算求值的能力,属基础题.2、A【解析】根据对数函数的性质单调递增,,列出不等式,解出即可.【详解】∵函数在定义域内单调递增,,∴不等式等价于,解得,故选A.【点睛】本题主要考查了对数不等式的解法,在解题过程中要始终注意函数的定义域,也是易错点,属于中档题.3、D【解析】先判断函数的奇偶性,再求函数的周期,然后确定选项【详解】是最小正周期为的奇函数,故A错误;的最小正周期是π是偶函数,故B错误;是最小正周期是π是偶函数,故C错误;最小正周期为π的奇函数,故D正确﹒故选:D4、A【解析】画出图像,利用正弦函数的对称性求出,再结合的范围即可求解.【详解】不妨设,画出的图像,即与有3个交点,由图像可知,关于对称,即,令,解得,所以,故,.故选:A.5、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.6、B【解析】解不等式,得其解集,进而结合充分、必要条件与集合间的包含关系的对应关系,可得不等式组,则有,(注:等号不同时成立),解可得答案【详解】解不等式,得其解集,,由于不等式成立的充分不必要条件是则有,(注:等号不同时成立);解得故选B.【点睛】本题考查充分、必要条件的判断及运用,注意与集合间关系的对应即可,属于简单题7、C【解析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误故选:C8、B【解析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【点睛】本题考查直线与圆的实际应用,属于中档题.9、D【解析】由已知条件得出,,,代入等式,求出即可得出结论.【详解】由题知,,,所以,,可得,所以,,.故选:D.10、B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由系数为1解出的值,再由单调性确定结论【详解】由题意,解得或,若,则函数为,在上递增,不合题意若,则函数为,满足题意故答案为:12、【解析】参变分离可得,令,构造函数,利用导数求解函数单调性,分析可得的值域为,即得解【详解】由题意,,故又,,令故,令,故在单调递增由于时故的值域为故,即实数的取值范围为故答案为:13、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:14、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;15、【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.16、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)图见解析【解析】(1)根据条件中所给函数的最高点的坐标,写出振幅,根据两个相邻点的坐标写出周期,把一个点的坐标代入求出初相,写出解析式;(2)利用五点法即可得到结论【详解】(1),,又,(2)00020-20本题主要考查三角函数的图象和性质,根据条件确定A,ω,φ的取值是解决本题的关键18、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题19、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.20、(1)x+2y-3=0(2)B(2,-2)【解析】(1)根据两直线平行则斜率相同,再将点代入即可求出直线的方程;(2)设出所求点的坐标,可表示出中点的坐标,再根据点关于直线的对称性质可得方程组,即可求出对称点的坐标.试题解析:(1)设,点代入∴:(2)设,则,的中点∴∴∴21、(Ⅰ)最小正周期是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论