版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省无锡市江阴市四校高二上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离2.已知的展开式中,各项系数的和与其各项二项式系数的和之比为,则()A.4 B.5C.6 D.73.某地为响应总书记关于生态文明建设的号召,大力开展“青山绿水”工程,造福于民,拟对该地某湖泊进行治理,在治理前,需测量该湖泊的相关数据.如图所示,测得角∠A=23°,∠C=120°,米,则A,B间的直线距离约为(参考数据)()A.60米 B.120米C.150米 D.300米4.已知四棱锥,底面为平行四边形,分别为,上的点,,设,则向量用为基底表示为()A. B.C. D.5.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.6.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.7.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.68.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.9.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或610.如图,在四面体中,,,,点为的中点,,则()A. B.C. D.11.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.12.经过两点直线的倾斜角是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,含项的系数为______(结果用数值表示)14.已知原命题为“若,则”,则它的逆否命题是__________(填写”真命题”或”假命题”)15.在平面直角坐标系中,双曲线左、右焦点分别为,,点M是双曲线右支上一点,,则双曲线的渐近线方程为___________.16.圆上的点到直线的距离的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.18.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.19.(12分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列前项和.20.(12分)在等比数列中,已知,(1)若,求数列的前项和;(2)若以数列中的相邻两项,构造双曲线,求证:双曲线系中所有双曲线的渐近线、离心率都相同21.(12分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长22.(10分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.2、C【解析】利用赋值法确定展开式中各项系数的和以及二项式系数的和,利用比值为,列出关于的方程,解方程.【详解】二项式的各项系数的和为,二项式的各项二项式系数的和为,因为各项系数的和与其各项二项式系数的和之比为,所以,.故选:C.3、C【解析】应用正弦定理有,结合已知条件即可求A,B间的直线距离.【详解】由题设,,在△中,,即,所以米.故选:C4、D【解析】通过寻找封闭的三角形,将相关向量一步步用基底表示即可.【详解】.故选:D5、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.6、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.7、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.8、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B9、A【解析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.10、B【解析】利用插点的方法,将归结到题目中基向量中去,注意中线向量的运用.【详解】.故选:B.11、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A12、B【解析】求出直线的斜率后可得倾斜角【详解】经过两点的直线的斜率为,设该直线的倾斜角为,则,又,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:1214、真命题【解析】先判断原命题的真假,再由逆否命题与原命题是等价命题判断.【详解】因为命题“若,则”是真命题,且逆否命题与原命题是等价命题,所以它的逆否命题是真命题,故答案为:真命题15、【解析】首先根据已知条件得到,再结合双曲线的几何性质求解即可.【详解】如图所示:,,所以,即.设,则,.即,,,,所以,渐近线方程为.故答案为:16、【解析】先求得圆心到直线的距离,结合圆上的点到直线的距离的最大值为,即可求解.【详解】由题意,圆的圆心坐标为,半径为,则圆心到直线的距离为,所以圆上的点到直线的距离的最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,设,由已知可得出,求出的值,即可得解;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】解:平面,,以点为坐标原点,、、所在直线分别为、、轴建立如图所示的空间直角坐标系,设,则、、、,则,,,则,解得,故.【小问2详解】解:,则,又、、,所以,,,设为平面的法向量,则,取,可得,显然,为平面的一个法向量,,因此,平面与平面夹角的余弦值为.18、(1)证明见解析;(2)证明见解析;(3).【解析】建立空间直角坐标系,求出各点的坐标;(1)用向量的坐标运算证明向量共面,进而证明点共面;(2)利用向量的数量积的坐标运算证明,即可;(3)确定平面EFGHKL的一个法向量,利用空间角度的向量计算公式求得答案.【小问1详解】证明:以D为原点,分别以DA,DC,所在直线为x,y,z轴建立空间直角坐标系,不妨设正方体的棱长为2.则,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它们过同一点E,所以E,F,G,H,K,L共面.【小问2详解】证明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小问3详解】由(2)知,是平面EFGHKL的一个法向量,设与平面EFGHKL所成角为,,,.所以,所以与平面EFGHKL所成角的余弦值为.19、(1);(2).【解析】(1)根据题意求出首项和公比即可得出通项公式;(2)可得是等差数列,利用等差数列前n项和公式即可求出.【详解】解:(1)设等比数列的公比为,则,由题意得,解得,因此,;(2),则,所以,数列是等差数列,首项,记数列前项和为,则.20、(1);(2)证明过程见解析.【解析】(1)根据等比数列的通项公式,结合对数的运算性质、等比数列和等差数列前项和公式进行求解即可;(2)根据等比数列的通项公式,结合双曲线渐近线方程和离心率公式进行证明即可.【小问1详解】设等比数列的公比为,因为,所以,因此,所以,所以;【小问2详解】由(1)知,在双曲线中,,所以得,因此双曲线的渐近线方程为:,双曲线的离心率为:,所以双曲线系中所有双曲线的渐近线、离心率都相同.21、(1)(2)【解析】(1)根据正弦定理及题中条件,可得,化简整理,即可求解(2)由的面积为4,结合(1)中结论,可得,结合余弦定理,可得,从而可求的周长【详解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面积为,∴.由余弦定理得,∴.故的周长为.【点睛】本题考查正弦定理应用,余弦定理解三角形,三角形面积公式,考查计算化简的能力,属基础题22、(1)证明见解析;(2).【解析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 岳阳市中心医院2026年度人员招聘备考题库及答案详解参考
- 2026年广州市南沙区联合中国教科院公开招聘事业编制小学校长备考题库有完整答案详解
- 2026年四川大学高分子科学与工程学院管理岗岗位招聘备考题库及参考答案详解
- 2026年济南市市中区残联公开招聘派遣制残疾人工作“一专两员”招聘备考题库及1套参考答案详解
- 2026年教师招聘西安高新区第三初级中学教师招聘备考题库有答案详解
- 外科学总论重症监测的护理要点课件
- 2026年建昌县第二小学公开招聘临时代课教师备考题库及答案详解一套
- 2026年度中共义乌市委党校公开招聘高层次人才备考题库及答案详解(考点梳理)
- 2026年杭州市之江外语实验学校招聘教师(非事业)备考题库(含答案详解)
- 2026年青海省地方病预防控制所招聘9人备考题库完整参考答案详解
- 2025年中国企业级AI应用行业研究报告
- 外派培训协议合同
- 水电站资产转让合同范本模板
- 2026年浙江省新华书店集团有限公司招聘45人笔试参考题库及答案解析
- 脓毒症诊断与治疗临床规范指南(2025年版)
- 辽宁省沈阳市沈河区2024-2025学年七年级上学期期末考试英语试卷
- 2025中闽能源股份有限公司招聘考试笔试参考题库附答案解析
- 小学语文整本书阅读教学在培养学生批判性思维和创新精神方面的实践研究教学研究课题报告
- 2026高中政治学业水平考试知识点归纳总结(复习必背)
- 2025年中国储备粮管理集团有限公司招聘考试笔试全真题库及答案(陕西)
- DB11∕T 1831-2021 装配式建筑评价标准
评论
0/150
提交评论