2026届湖南省永州市东安县一中高二上数学期末调研模拟试题含解析_第1页
2026届湖南省永州市东安县一中高二上数学期末调研模拟试题含解析_第2页
2026届湖南省永州市东安县一中高二上数学期末调研模拟试题含解析_第3页
2026届湖南省永州市东安县一中高二上数学期末调研模拟试题含解析_第4页
2026届湖南省永州市东安县一中高二上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省永州市东安县一中高二上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列2.已知椭圆的焦点分别为,,椭圆上一点P与焦点的距离等于6,则的面积为()A.24 B.36C.48 D.603.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.565.是椭圆的焦点,点在椭圆上,点到的距离为1,则到的距离为()A.3 B.4C.5 D.66.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.7.已知函数,若函数有3个零点,则实数的取值范围是()A. B.C. D.8.阅读程序框图,该算法的功能是输出A.数列的第4项 B.数列的第5项C.数列的前4项的和 D.数列的前5项的和9.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.10.某地为应对极端天气抢险救灾,需调用A,B两种卡车,其中A型卡车x辆,B型卡车y辆,以备不时之需,若x和y满足约束条件则最多需调用卡车的数量为()A.7 B.9C.13 D.1411.抛物线的准线方程是A. B.C. D.12.已知,则下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是椭圆的左、右焦点,在椭圆上运动,当的值最小时,的面积为_______14.已知等差数列的公差,等比数列的公比q为正整数,若,,且是正整数,则______15.已知空间向量,则使成立的x的值为___________16.已知曲线,则曲线在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的两焦点为、,P为椭圆上一点,且(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积18.(12分)已知函数(a为非零常数)(1)若f(x)在处的切线经过点(2,ln2),求实数a的值;(2)有两个极值点,.①求实数a的取值范围;②若,证明:.19.(12分)已知等差数列满足:,(1)求数列的通项公式,以及前n项和公式;(2)若,求数列的前n项和20.(12分)在等差数列中,设前项和为,已知,.(1)求的通项公式;(2)令,求数列的前项和.21.(12分)设命题p:实数x满足x≤2,或x>6,命题q:实数x满足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且为真命题,求实数x的取值范围;(2)若q是的充分不必要条件,求实数a的取值范围.22.(10分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题2、A【解析】由题意可得出与、、的值,在根据椭圆定义得的值,即可得到是直角三角形,即可求出的面积.【详解】由题意知,.根据椭圆定义可知,是直角三角形,.故选:A.3、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D4、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B5、C【解析】利用椭圆的定义直接求解【详解】由题意得,得,因为,,所以,故选:C6、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B7、B【解析】构造,通过求导,研究函数的单调性及极值,最值,画出函数图象,数形结合求出实数的取值范围.【详解】令,即,令,当时,,,令得:或,结合,所以,令得:,结合得:,所以在处取得极大值,也是最大值,,当时,,且,当时,,则恒成立,单调递增,且当时,,当时,,画出的图象,如下图:要想有3个零点,则故选:B8、B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可详解:模拟程序的运行,可得:

A=0,i=1执行循环体,,

不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.9、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D10、B【解析】画出约束条件的可行域,利用目标函数的几何意义即可求解【详解】设调用卡车的数量为z,则,其中x和y满足约束条件,作出可行域如图所示:当目标函数经过时,纵截距最大,最大.故选:B11、C【解析】根据抛物线的概念,可得准线方程为12、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据椭圆定义得出,进而对进行化简,结合基本不等式得出的最小值,并求出的值,进而求出面积.【详解】由椭圆定义可知,,所以,,当且仅当,即时取“=”.又,所以.所以,由勾股定理可知:,所以.故答案为:.14、【解析】由已知等差、等比数列以及,,是正整数,可得,结合q为正整数,进而求.【详解】由,,令,其中m为正整数,有,又为正整数,所以当时,解得,当时,解得不是正整数,故答案为:15、##【解析】利用空间向量垂直的坐标表示列方程求参数x的值.【详解】由题设,,可得.故答案为:.16、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题可得,根据椭圆的定义,求得,进而求得的值,即可求解;(2)由题可得直线方程为,联立椭圆方程可得点P,利用三角形的面积公式,即求.【小问1详解】设椭圆的标准方程为,焦距为,由题可得,,所以,可得,即,则,所以椭圆的标准方程为【小问2详解】设点坐标为,,,∵,∴所在的直线方程为,则解方程组,可得,∴.18、(1)(2)①(0,1);②证明见解析【解析】小问1先求出切线方程,再将点(2,ln2),代入即可求出a的值;小问2的①通过求导,再结合函数的单调性求出a的取值范围;②结合已知条件,构造新函数即可得到证明.【小问1详解】,∴切线方程为,将点代入解得:【小问2详解】①当时,即时,,f(x)在(-1,+∞)上单调递增;f(x)无极值点,当时,由得,,故f(x)在(-1,-)上单调递增,在(-,)上单调递减,在(,+∞)上单调递增,f(x)有两个极值点;.当时,由得,,f(x)(,)上单调递减,在(,+∞)上单调递此时,f(x)有1个极值点,综上,当时,f(x)有两个极值点,即,即a的范围是(0,1)②由(2)可知,又由可知,可得.要证,即证,即证,即证即证令函数,x(0,1),故t(x)在(0,1)上单调递增,又所以在上恒成立,即所以.19、(1),(2)【解析】(1)由,,列出方程组,求得,即可求得数列的通项公式,利用公式可得.(2)由(1)求得,结合“裂项法”求和,即可求解.【详解】(1)设等差数列的公差为,因为,,可得,解得,所以数列的通项公式.(2)由(1)知,可得,所以数列的前项和:.【点睛】关键点睛:本题主要考查了等差数列的通项公式的求解,以及“裂项法”求和的应用,解答本题的关键是将的通项裂成两项的差,利用裂项相消求和,属于中档题.20、(1)(2)【解析】(1)根据等差数列的前项和公式,即可求解公差,再计算通项公式;(2)根据(1)的结果,利用裂项相消法求和.【小问1详解】设的公差为,由已知得,解得,所以.【小问2详解】所以.21、(1){x|2<x<4};(2).【解析】(1)分别求出命题和为真时对应的取值范围,即可求出;(2)由题可知,列出不等式组即可求解.【详解】解:(1)当a=2时,命题q:2<x<4,∵命题p:x≤2或x>6,,又为真命题,∴x满足,∴2<x<4,∴实数x的取值范围{x|2<x<4};(2)由题意得:命题q:a<x<2a;∵q是的充分不必要条件,,,解得,∴实数a的取值范围.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)若是的充分不必要条件,则对应集合是对应集合的真子集;(3)若是的充分必要条件,则对应集合与对应集合相等;(4)若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论