2026届哈尔滨市第三中学数学高一上期末检测试题含解析_第1页
2026届哈尔滨市第三中学数学高一上期末检测试题含解析_第2页
2026届哈尔滨市第三中学数学高一上期末检测试题含解析_第3页
2026届哈尔滨市第三中学数学高一上期末检测试题含解析_第4页
2026届哈尔滨市第三中学数学高一上期末检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届哈尔滨市第三中学数学高一上期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向右平移个单位,得到的图象对应的解析式是A. B.C. D.2.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.3.下列说法中,正确的是()A.锐角是第一象限的角 B.终边相同的角必相等C.小于的角一定为锐角 D.第二象限的角必大于第一象限的角4.已知指数函数的图象过点,则()A. B.C.2 D.45.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在6.已知函数是定义在上的偶函数,且在上是减函数,若,,,则,,的大小关系为()A. B.C. D.7.已知,则下列说法正确的是()A.有最大值0 B.有最小值为0C.有最大值为-4 D.有最小值为-48.若函数在闭区间上有最大值5,最小值1,则的取值范围是()A. B.C. D.9.当前,全球疫情仍处于大流行状态,多国放松管控给我国外防输入带来挑战,冬季季节因素导致周边国家疫情输入我国风险大大增加.现有一组境外输入病例数据:x(月份)12345y(人数)97159198235261则x,y的函数关系与下列哪类函数最接近()A. B.C. D.10.函数(且)的图象一定经过的点是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______12.在直角坐标系中,直线的倾斜角________13.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的14.求值:__________15.在直三棱柱中,若,则异面直线与所成的角等于_________.16.已知函数的部分图象如图所示,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在初中阶段函数学习中,我们经历了“确定函数的表达式—利用函数图象研究其性质”,函数图象在探索函数的性质中有非常重要的作用,下面我们对已知经过点的函数的图象和性质展开研究.探究过程如下,请补全过程:x…0179…y…m0n…(1)①请根据解析式列表,则_________,___________;②在给出的平面直角坐标系中描点,并画出函数图象;(2)写出这个函数的一条性质:__________;(3)已知函数,请结合两函数图象,直接写出不等式的解集:____________.18.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?19.已知函数,将函数的图象向左平移个单位,再向上平移2个单位,得到函数的图象.(1)求函数的解析式;(2)求函数在上的最大值和最小值.20.已知,且为第二象限角(1)求的值;(2)求值.21.已知函数.若函数在区间上的最大值为,最小值为.(1)求函数的解析式;(2)求出在上的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】横坐标伸长倍,则变为;根据左右平移的原则可得解析式.【详解】横坐标伸长倍得:向右平移个单位得:本题正确选项:【点睛】本题考查三角函数图象平移变换和伸缩变换,关键是能够明确伸缩变换和平移变换都是针对于的变化.2、C【解析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项3、A【解析】根据锐角的定义,可判定A正确;利用反例可分别判定B、C、D错误,即可求解.【详解】对于A中,根据锐角的定义,可得锐角满足是第一象限角,所以A正确;对于B中,例如:与的终边相同,但,所以B不正确;对于C中,例如:满足,但不是锐角,所以C不正确;对于D中,例如:为第一象限角,为第二象限角,此时,所以D不正确.故选:A.4、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C5、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.6、B【解析】分析:利用函数的单调性即可判断.详解:因为函数为偶函数且在(−∞,0)上单调递减,所以函数在(0,+∞)上单调递增,由于,所以.故选B.点睛:对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系7、B【解析】由均值不等式可得,分析即得解【详解】由题意,,由均值不等式,当且仅当,即时等号成立故,有最小值0故选:B8、D【解析】数形结合:根据所给函数作出其草图,借助图象即可求得答案【详解】,令,即,解得或,,作出函数图象如下图所示:因为函数在闭区间上有最大值5,最小值1,所以由图象可知,故选:D【点睛】本题考查二次函数在闭区间上的最值问题,考查数形结合思想,深刻理解“三个二次”间的关系是解决该类问题的关键9、D【解析】根据表中数据可得每月人数的增长速度在逐月减缓,即可选出答案.【详解】计算可知,每月人数增长分别为62,39,37,26,增长速度在逐月减缓,符合对数函数的特点,故选:D10、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据,利用诱导公式转化为可求得结果.【详解】因为,所以.故答案为:.【点睛】本题考查了利用诱导公式求值,解题关键是拆角:,属于基础题.12、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:13、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx14、【解析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:15、【解析】如图以点为坐标原点,分别以为轴建立空间直角坐标系,利用空间向量求解即可.【详解】解:因为三棱柱为直三棱柱,且,所以以点为坐标原点,分别以为轴建立空间直角坐标系,设,则,所以,所以,因为异面直线所成的角在,所以异面直线与所成的角等于,故答案为:【点睛】此题考查异面直线所成角,利用了空间向量进行求解,属于基础题.16、①.②.【解析】分析:先根据四分之一周期求根据最高点求.详解:因为因为点睛:已知函数的图象求解析式(1).(2)由函数周期求(3)利用“五点法”中相对应的特殊点求.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)①,;②答案见解析(2)函数的最小值为(3)或【解析】(1)把、分别代入函数解析式即可把下表补充完整;描点、连线即可得到函数的图象;(2)这个函数的最小值为;(3)画出两个函数的图象,结合图象即可求解结论【小问1详解】解:①将和分别代入函数解析式可得:,;②根据表格描点,连线,x013579y01可得这个函数的图象所示:;【小问2详解】解:由图象可知:这个函数的最小值为,(答案不唯一);【小问3详解】解:在同一直角坐标系中作出和图象如图所示:当时,令,解得,当时,令,解得,所以两个函数图象相交于点,所以当时,自变量x的取值范围为或,即不等式的解集为或.18、(1);(2)5;(3)15.【解析】(1)根据题意,列出关于砍伐面积的百分比的方程,即可容易求得;(2)到今年为止,森林剩余面积为原来的,可列出关于m的等式,解之即可.(3)设从今年开始,最多还能砍伐年,列出相应表达式有,解不等式求出的范围即可【详解】(1)设每年砍伐的百分比为,则,即,,解得:所以每年砍伐面积的百分比为(2)设经过年剩余面积为原来,则,即又由(1)知,,,解得故到今年为止,该森林已被砍伐5年(3)设从今年开始,最多还能砍伐年,则年后剩余面积为.令,即,,,解得故今后最多还能砍伐15年【点睛】关键点点睛:本题考查指数型函数数学建模在实际问题中的应用,熟练运用指数性质运算,将文字语言转化成数学语言是解题的关键,考查学生的转化能力与运算能力,属于中档题.19、(1)(2)见解析【解析】(1)首先化简三角函数式,然后确定平移变换之后的函数解析式即可;(2)结合(1)中函数解析式确定函数的最大值即可.【详解】(1).由题意得,化简得.(2)∵,可得,∴.当时,函数有最大值1;当时,函数有最小值.【点睛】本题主要考查三角函数图像的变换,三角函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.20、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论