版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届莆田市重点中学数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在正方体ABCD-EFGH中,P在棱BC上,BP=x,平行于BD的直线l在正方形EFGH内,点E到直线l的距离记为d,记二面角为A-l-P为θ,已知初始状态下x=0,d=0,则()A.当x增大时,θ先增大后减小 B.当x增大时,θ先减小后增大C.当d增大时,θ先增大后减小 D.当d增大时,θ先减小后增大2.已知向量,若,则()A. B.5C.4 D.3.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.4.2013年9月7日,总书记在哈萨克斯坦纳扎尔巴耶夫大学发表演讲在谈到环境保护问题时提出“绿水青山就是金山银山”这一科学论新.某市为了改善当地生态环境,2014年投入资金160万元,以后每年投入资金比上一年增加20万元,从2021年开始每年投入资金比上一年增加10%,到2024年底该市生态环境建设投资总额大约为()(其中,,)A.2559万元 B.2969万元C.3005万元 D.3040万元5.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.6.若动点满足方程,则动点P的轨迹方程为()A. B.C. D.7.“1<x<2”是“x<2”成立的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么9.“”是“方程为双曲线方程”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.若数列满足,则的值为()A.2 B.C. D.11.设等比数列的前项和为,若,则()A. B.C. D.12.已知双曲线,过左焦点且与轴垂直的直线与双曲线交于、两点,若弦的长恰等于实铀的长,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,若,则______14.双曲线的实轴长为______.15.设抛物线的准线方程为__________.16.等差数列的前n项和分别为,若对任意正整数n都有,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.18.(12分)如图,在长方体中,,.点E在上,且(1)求证:平面;(2)求二面角的余弦值19.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程20.(12分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点21.(12分)已知函数.(1)当时,求函数的极大值与极小值;(2)若函数在上的最大值是最小值的3倍,求a的值.22.(10分)已知椭圆的中心在原点,焦点为,,且长轴长为4.(1)求椭圆的方程;(2)直线与椭圆相交于A,两点,求弦长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,,求得平面AMN的法向量为,平面PMN的法向量,由空间向量的夹角公式表示出,对于A,B选项,令d=0,则,由函数的单调性可判断;对于C,D,当x=0时,则,令,利用导函数研究函数的单调性可判断.【详解】解:由题意,以F为坐标原点,FB,FG,FE所在直线为x轴,y轴,z轴建立空间直角坐标系如图所示,设正方体的棱长为2,则P(2,x,0),A(2,0,2),设直线l与EF,EH交于点M、N,则,所以,,设平面AMN的法向量为,则,即,令,则,设平面PMN的法向量为,则,即,令,则,,对于A,B选项,令d=0,则,显示函数在是为减函数,即减小,则增大,故选项A,B错误;对于C,D,对于给定的,如图,过作,垂足为,过作,垂足为,过作,垂足为,当在下方时,,设,则对于给定的,为定值,此时设二面角为,二面角为,则二面角为,且,故,而,故即,当时,为减函数,故为增函数,当时,为增函数,故为减函数,故先增后减,故D错误.当在上方时,,则对于给定的,为定值,则有二面角为,且,因,故为增函数,故为减函数,综上,对于给定的,随的增大而减少,故选:C.2、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B3、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.4、B【解析】前7年投入资金可看成首项为160,公差为20的等差数列,后4年投入资金可看成首项为260,公比为1.1的等比数列,分别求和,即可求出所求【详解】2014年投入资金160万元,以后每年投入资金比上一年增加20万元,成等差数列,则2020年投入资金万元,年共7年投资总额为,从2021年开始每年投入资金比上一年增加,则从2021年到2024年投入资金成首项为,公比为1.1,项数为4的等比数列,故从2021年到2024年投入总资金为,故到2024年底该市生态环境建设投资总额大约为万元故选:5、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C6、A【解析】根据方程可以利用几何意义得到动点P的轨迹方程是以与为焦点的椭圆方程,从而求出轨迹方程.【详解】由题意得:到与的距离之和为8,且8>4,故动点P的轨迹方程是以与为焦点的椭圆方程,故,,所以,,所以椭圆方程为.故选:A7、A【解析】因为“若,则”是真命题,“若,则”是假命题,所以“”是“”成立的充分不必要条件.选A考点:充分必要条件的判断【易错点睛】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.对于命题“若,则”是真命题,我们说,并且说是的充分条件,是的必要条件,命题“若,则”是假命题,我们说,由充分条件,必要条件的定义,可以判断出“”是“”成立的充分不必要条件.掌握充分条件,必要条件的定义是解题关键8、C【解析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C9、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”原则进行判断即可.【详解】因为方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.10、C【解析】通过列举得到数列具有周期性,,所以.详解】,同理可得:,可得,则.故选:C.11、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.12、B【解析】求出,进而求出,之间的关系,即可求解结论【详解】解:由题意,直线方程为:,其中,因此,设,,,,解得,得,,弦的长恰等于实轴的长,,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:14、4【解析】根据双曲线标准方程的特征即可求解.【详解】由题可知.故答案为:4.15、【解析】由题意结合抛物线的标准方程确定其准线方程即可.【详解】由抛物线方程可得,则,故准线方程为.故答案为【点睛】本题主要考查由抛物线方程确定其准线方法,属于基础题.16、##0.68【解析】利用等差数列求和公式与等差中项进行求解.【详解】由题意得:,同理可得:,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以18、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,分别写出,,的坐标,证明,,即可得证;(2)由(1)知,的法向量为,直接写出平面法向量,按照公式求解即可.【小问1详解】在长方体中,以为坐标原点,所在直线分别为轴,轴,轴建立如图所示空间直角坐标系因为,,所以,,,,,则,,,所以有,,则,,又所以平面小问2详解】由(1)知平面的法向量为,而平面法向量为所以,由图知二面角为锐二面角,所以二面角的余弦值为19、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或20、(1)(2)见解析【解析】(1)由抛物线的定义,可得点的坐标;(2)可设直线的方程为,,,,与抛物线联立,消,利用韦达定理求得,,再根据,可得,从而可求得参数的关系,即可得出结论.【小问1详解】解:设,,由抛物线的定义可知,即,解得,将代入方程,得,即的坐标为;【小问2详解】证明:由题意知直线不能与轴平行,可设直线的方程为,与抛物线联立得,消去得,设,,,则,,由,可得,即,即,即,又,解得,所以直线方程为,当时,,所以直线过定点21、(1)的极大值为0,的极小值为(2)2【解析】(1)先求导可得,再利用导函数判断的单调性,进而求解;(2)由(1)可得在上的最小值为,由,,可得的最大值为,进而根据求解即可.【详解】解:(1)当时,,所以,令,则或,则当和时,;当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全国安全培训工作课件指导
- 游泳专业大学生就业前景
- 解密人工智能大模型的核心技术
- 现代医患关系发展特点
- 职业规划与前景分析
- 人工智能与未来
- 医患关系类型简述
- 门店销售沟通话术大全
- 光迅科技安全培训课件
- 人工智能学习实战经验分享
- 2026液态氧储罐泄漏事故应急处置方案
- 直肠解剖课件
- 2025天津大学招聘15人备考考试试题及答案解析
- 辽宁省丹东市凤城市2024-2025学年八年级上学期1月期末语文试题
- 2025年山西大地环境投资控股有限公司社会招聘116人备考题库有答案详解
- 2026元旦主题晚会倒计时快闪
- 物理试卷答案浙江省9+1高中联盟2025学年第一学期高三年级期中考试(11.19-11.21)
- 2025年交管12123学法减分考试题附含答案
- 楼宇智能弱电系统培训资料
- 2025抖音流量生态深度解析:算法逻辑、爆流密码与运营实战全指南
- 2025至2030中国警用装备行业项目调研及市场前景预测评估报告
评论
0/150
提交评论