山东省青岛十七中2026届高二数学第一学期期末预测试题含解析_第1页
山东省青岛十七中2026届高二数学第一学期期末预测试题含解析_第2页
山东省青岛十七中2026届高二数学第一学期期末预测试题含解析_第3页
山东省青岛十七中2026届高二数学第一学期期末预测试题含解析_第4页
山东省青岛十七中2026届高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省青岛十七中2026届高二数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为抛物线上一点,点P到抛物线C的焦点的距离与它到y轴的距离之比为,则()A.1 B.C.2 D.32.经过点且圆心是两直线与的交点的圆的方程为()A. B.C. D.3.内角、、的对边分别为、、,若,,,则()A. B.C. D.4.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.165.已知,,且,则()A. B.C. D.6.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.7.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.8.在等比数列中,,,则等于A. B.C. D.或9.总体由编号为的30个个体组成.利用所给的随机数表选取6个个体,选取的方法是从随机数表第1行的第3列和第4列数字开始,由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.20 B.26C.17 D.0310.命题“若α=,则tanα=1”的逆否命题是A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠ D.若tanα≠1,则α=11.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.312.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数据6,8,9,10,7的方差为______14.设是数列的前项和,且,则_____________.15.给出下列命题:①若两条不同的直线同时垂直于第三条直线,则这两条直线互相平行;②若两个不同的平面同时垂直于同一条直线,则这两个平面互相平行;③若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行;④若两个不同的平面同时垂直于第三个平面,则这两个平面互相垂直.其中所有正确命题的序号为________.16.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,△ABC中,,,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C,M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体(1)求该几何体中间一个空心球表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积18.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.19.(12分)设全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”充分条件,求a的取值范围;(2)若“x∈A”是“x∈B”的必要条件,求a的取值范围.20.(12分)已知函数(1)求f(x)在点处的切线方程;(2)求证:21.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由22.(10分)求适合下列条件的椭圆的标准方程:(1)经过点,;(2)长轴长是短轴长的3倍,且经过点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求出点的坐标,然后根据抛物线的定义和已知条件列方程求解即可【详解】因为为抛物线上一点,所以,得,所以,抛物线的焦点为,因为点P到抛物线C的焦点的距离与它到y轴的距离之比为,所以,化简得,因为,所以,故选:B2、B【解析】求出圆心坐标和半径后,直接写出圆的标准方程.【详解】由得,即所求圆的圆心坐标为.由该圆过点,得其半径为1,故圆的方程为.故选:B.【点睛】本题考查了圆的标准方程,属于基础题.3、C【解析】利用正弦定理可求得边的长.【详解】由正弦定理得.故选:C.4、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C5、D【解析】利用空间向量共线的坐标表示可求得、的值,即可得解.【详解】因为,则,所以,,,因此,.故选:D6、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.7、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.8、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D9、D【解析】根据题目要求选取数字,在30以内的正整数符合要求,不在30以内的不合要求,舍去,与已经选取过重复的舍去,找到第5个个体的编号.【详解】已知选取方法为从第一行的第3列和第4列数字开始,由左到右一次选取两个数字,所以选取出来的数字分别为12(符合要求),13(符合要求),40(不合要求),33(不合要求),20(符合要求),38(不合要求),26(符合要求),13(与前面重复,不合要求),89(不合要求),51(不合要求),03(符合要求),故选出来的第5个个体的编号为03.故选:D10、C【解析】因为“若,则”的逆否命题为“若,则”,所以“若α=,则tanα=1”的逆否命题是“若tanα≠1,则α≠”.【点评】本题考查了“若p,则q”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力.11、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.12、A【解析】根据题意可求出正方体的上底面与球相交所得截面圆的半径为4cm,再根据截面圆半径,球的半径以及球心距的关系,即可求出球的半径,从而得到球的体积【详解】设球的半径为cm,根据已知条件知,正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面圆的距离为cm,所以由,得,所以球的体积为故选:A【点睛】本题主要考查球的体积公式的应用,以及球的结构特征的应用,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】首先求出数据的平均值,再应用方差公式求它们的方差.【详解】由题设,平均值为,∴方差.故答案为:2.14、【解析】根据题意可知,再利用裂项相消法,即可求出结果.【详解】因为,所以.故答案为:.15、②③【解析】由垂直于同一直线的两直线的位置关系判断①;由直线与平面垂直的性质判断②③;由空间中平面与平面的位置关系判断④【详解】①若两条不同的直线垂直于第三条直线,则这两条直线有三种位置关系:平行、相交或异面,故错误;②根据线面垂直的性质知,若两个不同的平面垂直于一条直线,则这两个平面互相平行,故正确;③由线面垂直的性质知:若两条不同的直线同时垂直于同一个平面,则这两条直线互相平行,故正确④若两个不同的平面同时垂直于第三个平面,这两个平面相交或平行,故错误.其中所有正确命题的序号为②③故答案为:②③16、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】根据旋转体的轴截面图,根据已知条件求球的半径与长,再利用球体、圆锥的面积、体积公式计算即可.【小问1详解】连接,则,设,在中,,;【小问2详解】,∴圆锥球.18、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或19、(1)(2)【解析】(1)由“”是“”的充分条件,可得,从而可得关于的不等式组,解不等式组可得答案;(2)“”是“”的必要条件,可得,然后分和两种情况求解即可【小问1详解】由题意得到A=[1,5],由“x∈A”是“x∈B”的充分条件可得A⊆B,则,解得,故实数a的取值范围是.【小问2详解】由“x∈A”是“x∈B”的必要条件可得B⊆A,当时,2-a>1+2a,即a<时,满足题意,当时,即a≥时,则,解得≤a≤1.综上a≤1,故实数a的取值范围是.20、(1);(2)证明见解析【解析】(1)求导,进而得到,,写出切线方程;(2)将转化为,设,,利用导数法证明.【详解】(1)函数的定义域是,可得又,所以f(x)在点处的切线方程为整理得(或斜截式方程)(2)要证只需证因为,所以不等式等价于设,,;所以在单调递减,在单调递增故又,;所以在单调递增,在单调递减故因为且两个函数的最值点不相等所以有,原不等式得证21、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【点睛】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论