2026届福建省高一数学第一学期期末复习检测模拟试题含解析_第1页
2026届福建省高一数学第一学期期末复习检测模拟试题含解析_第2页
2026届福建省高一数学第一学期期末复习检测模拟试题含解析_第3页
2026届福建省高一数学第一学期期末复习检测模拟试题含解析_第4页
2026届福建省高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届福建省高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值是()A B.C. D.2.若方程则其解得个数为()A.3 B.4C.6 D.53.已知为锐角,且,,则A. B.C. D.4.已知,,,则下列判断正确的是()A. B.C. D.5.在某次测量中得到的样本数据如下:.若样本数据恰好是样本数据都加2后所得数据,则两样本的下列数字特征对应相同的是()A.众数 B.平均数C.标准差 D.中位数6.关于函数有下述四个结论:①是偶函数;②在区间单调递减;③在有个零点;④的最大值为.其中所有正确结论的编号是()A.①②④ B.②④C.①④ D.①③7.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.8.已知曲线的图像,,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线9.已知函数,则A.1 B.C.2 D.010.函数在上最大值与最小值之和是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为______12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.14.请写出一个最小正周期为,且在上单调递增的函数__________15.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为________.16.函数的部分图象如图所示.若,且,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式:(1)(2)18.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值19.(1)已知,且,求的值(2)已知,是关于x的方程的两个实根,且,求的值20.已知定义域为D的函数fx,若存在实数a,使得∀x1∈D,都存在x2∈D满足(1)判断下列函数是否具有性质P0,说明理由;①fx=2x;(2)若函数fx的定义域为D,且具有性质P1,则“fx存在零点”是“2∈D”的___________条件,说明理由;(横线上填“(3)若存在唯一的实数a,使得函数fx=tx2+x+4,x∈0,221.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,应用诱导公式求值即可.【详解】.故选:C2、C【解析】分别画出和的图像,即可得出.【详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【点睛】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.3、B【解析】∵为锐角,且∴∵,即∴,即∴∴故选B4、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.5、C【解析】分别求两个样本的数字特征,再判断选项.【详解】A样本数据是:,样本数据是:,A样本的众数是48,B样本的众数是50,故A错;A样本的平均数是,B样本的平均数是,故B错;A样本的标准差B样本的标准差,,故C正确;A样本的中位数是,B样本的中位数是,故D错.故选:C6、A【解析】利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误.【详解】对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题;对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确;对于命题③,当时,,则,当时,,则,由偶函数的性质可知,当时,,则函数在上有无数个零点,命题③错误;对于命题④,若函数取最大值时,,则,,当时,函数取最大值,命题④正确.因此,正确的命题序号为①②④.故选A.【点睛】本题考查与余弦函数基本性质相关的命题真假的判断,解题时要结合自变量的取值范围去绝对值,结合余弦函数的基本性质进行判断,考查推理能力,属于中等题.7、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.8、D【解析】先将转化为,再根据三角函数图像变换的知识得出正确选项.【详解】对于曲线,,要得到,则把上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再把得到的曲线向左平移个单位长度,得到,即得到曲线.故选:D.9、C【解析】根据题意可得,由对数的运算,即可求解,得到答案【详解】由题意,函数,故选C【点睛】本题主要考查了函数值的求法,函数性质等基础知识的应用,其中熟记对数的运算性质是解答的关键,着重考查了考查化归与转化思想、函数与方程思想,属于基础题,10、A【解析】直接利用的范围求得函数的最值,即可求解.【详解】∵,∴,∴,∴最大值与最小值之和为,故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,,在上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期12、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、【解析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.14、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).15、【解析】根据内接圆柱的轴截面是边长为2的正方形,确定球O的半径,再由球的表面积公式即得。【详解】由题得,圆柱底面直径为2,球的半径为R,球O的内接圆柱的轴截面是边长为2的正方形,则圆柱的轴截面的对角线即为球的直径,故,则球的表面积.故答案为:【点睛】本题考查空间几何体,球的表面积,是常见的考题。16、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.18、(1)π(2)最大值1,最小值-【解析】(1)根据正弦函数的性质即可求解;(2)将看作整体,根据正弦函数的图像即可求解.【小问1详解】f(x)=sin,所以f(x)的最小正周期为T==π;【小问2详解】因为x∈,所以2x+∈,根据正弦函数的图像可知:当2x+=,即x=时,f(x)取得最大值1,当2x+=,即x=时,f(x)取得最小值-;综上,最小正周期为,最大值为1,最小值为.19、(1);(2)【解析】(1)先求出角,利用诱导公式即可求出;(2)利用根与系数关系求出,得到,利用切化弦和二倍角公式即可求解.【详解】(1)因为,所以由,得,即所以(2)由题意得因为且,所以解得,所以则,即20、(1)①不具有性质P0;②具有性质(2)必要而不充分条件,理由见解析(3)t=【解析】(1)根据2x>0举例说明当x1>0时不存在x1+fx22=0;取x2=2-x1∈0,1可知fx=log2x,x∈0,1具有性质P0.(2)分别从fx存在零点,证明2∉0,1.和若2∈D,fx具有性质P(1)时,f【小问1详解】函数fx=2x对于a=0,x1=1,因为1+2所以函数fx=2函数fx=log2对于∀x1∈0,因为x1所以函数fx=log【小问2详解】必要而不充分理由如下:①若fx存在零点,令fx=3x-1因为∀x1∈0,1,取所以fx具有性质P(1②若2∈D,因为fx具有性质P取x1=2,则存在x2所以fx2=0,即f综上可知,“fx存在零点”是“2∈D”的必要而不充分条件【小问3详解】记函数fx=tx2+x+4,x∈因为存在唯一的实数a,使得函数fx=tx2+x+4,x∈0,2有性质①当t=0时,fx=x+4,由F=A得a=3.②当-14≤t,且t≠0时,由F=A得t=0,舍去.③当-12≤t<-14最小值为4,所以fx的值域F=由F=A得t=-18当t<-12时,fx=tx所以fx的值域F=由F=A得t=-2-34(舍去21、(1);(2)最大值,最小值为-1.【解析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论