版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市十五校联盟联合体2026届数学高一上期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.182.如图,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,动点P从点A出发,由A→D→C→B沿边运动,点P在AB上的射影为Q.设点P运动的路程为x,△APQ的面积为y,则y=f(x)的图象大致是()A. B.C. D.3.若函数的零点所在的区间为,则整数的值为()A. B.C. D.4.若,则的值是()A. B.C. D.15.某服装厂2020年生产了15万件服装,若该服装厂的产量每年以20%的增长率递增,则该服装厂的产量首次超过40万件的年份是(参考数据:取,)()A.2023年 B.2024年C.2026届 D.2026年6.如图是函数在一个周期内的图象,则其解析式是()A. B.C. D.7.设a>0且a≠1,则“函数fx=ax在R上是减函数”是“函数gxA.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.某人围一个面积为32m2的矩形院子,一面靠旧墙,其它三面墙要新建(其平面示意图如下),墙高3m,新墙的造价为1000元/m2,则当A.9 B.8C.16 D.649.不等式的解集是()A.或 B.或C. D.10.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则________.12.已知函数,x0R,使得,则a=_________.13.已知,点在直线上,且,则点的坐标为________14.的解集为_____________________________________15.已知函数,则函数的值域为______16.已知,且,则__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=+ln(5-x)的定义域为A,集合B={x|2x-a≥4}.(Ⅰ)当a=1时,求集合A∩B;(Ⅱ)若A∪B=B,求实数a的取值范围.18.已知函数(1)求最小正周期;(2)求的单调递减区间;(3)当时,求的最小值及取得最小值时的值19.求经过点和,圆心在轴上的圆的方程.20.已知集合,,(1)求集合A,B及.(2)若,求实数a的取值范围.21.已知集合,.(1)若,求;(2)在①,②,③,这三个条件中任选一个作为条件,求实数的取值范围.(注意:如果选择多个条件分别解答,则按第一个解答计分)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C2、D【解析】结合P点的运动轨迹以及二次函数,三角形的面积公式判断即可【详解】解:P点在AD上时,△APQ是等腰直角三角形,此时f(x)=•x•x=x2,(0<x<2)是二次函数,排除A,B,P在DC上时,PQ不变,AQ增加,是递增的一次函数,排除C,故选D【点睛】本题考查了数形结合思想,考查二次函数以及三角形的面积问题,是一道基础题3、C【解析】结合函数单调性,由零点存在性定理可得解.【详解】由为增函数,且,可得零点所在的区间为,所以.故选:C.4、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D5、D【解析】设该服装厂的产量首次超过40万件的年份为n,进而得,再结合对数运算解不等式即可得答案.【详解】解:设该服装厂的产量首次超过40万件的年份为n,则,得,因为,所以故选:D6、B【解析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解.,【详解】由函数的图象可知:A=3,,,所以,又点在图象上,所以,即,所以,即,因为,所以所以故选:B【点睛】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题.7、A【解析】函数f(x)=ax在R上是减函数,根据指数函数的单调性得出0<a<1;函数g(x)=(4-a)⋅x在R上是增函数,得出0<a<4且【详解】函数f(x)=ax在R上是减函数,则函数g(x)=(4-a)⋅x在R上是增函数,则4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函数fx=ax在R上是减函数”是“函数gx故选:A.8、B【解析】由题设总造价为y=3000(x+64x),应用基本不等式求最小值,并求出等号成立时的【详解】由题设,总造价y=1000×3×(x+2×32当且仅当x=8时等号成立,即x=8时总造价最低.故选:B.9、A【解析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【详解】由,得,解得或所以原不等式的解集为或故选:A10、B【解析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:212、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方13、,【解析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【点睛】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.14、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解析】先求的的单调性和值域,然后代入中求得函数的值域.【详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【点睛】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.16、【解析】利用二倍角公式可得,再由同角三角函数的基本关系即可求解.【详解】解:因为,整理可得,解得,或2(舍去),由于,可得,,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】(Ⅰ)可求出定义域,从而得出,并可求出集合,从而得出时的集合,然后进行交集的运算即可;(Ⅱ)根据即可得出,从而得出,从而得出实数的取值范围【详解】解:(Ⅰ)要使f(x)有意义,则:;解得-4≤x<5;∴A={x|-4≤x<5};B={x|x≥a+2},a=1时,B={x|x≥3};∴A∩B={x|3≤x<5};(Ⅱ)∵A∪B=B;∴A⊆B;∴a+2≤-4;∴a≤-6;∴实数a的取值范围为(-∞,-6].【点睛】考查函数的定义域的概念及求法,交集的概念及运算,以及子集的概念,属于基础题.18、(1)(2)(3)最小值为,【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式可求得函数的最小正周期;(2)解不等式可得出函数的单调递减区间;(3)由可求得的取值范围,结合正弦型函数的基本性质可求得的最小值及其对应的值.【小问1详解】解:由,则的最小正周期为【小问2详解】解:由,,则,,则,,所以的单调递减区间为【小问3详解】解:当时,,当时,即当时,函数取最小值,且.19、.【解析】根据条件得到,设圆心为,根据点点距列出式子即可,求得参数值解析:圆的圆心在轴上,设圆心为,由圆过点和,由可得,即,求得,可得圆心为,半径为,故圆的方程为.点睛:这个题目考查了圆的方程的求法,利用圆的定义得到圆上的点到圆心的距离相等,可列出式子.一般和圆有关的多数是利用圆的几何性质,垂径定理列出方程,利用切线的性质即切点和圆心的连线和切线垂直列式子.注意观察式子的特点20、(1),,;(2).【解析】(1)解不等式得到集合,,进而可得;(2)先求,再根据得到,由此可解得实数的取值范围【详解】(1)∵,∴且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富春山居图介绍课件
- 家长康复培训课件
- 影视发行合同2026年数据共享协议
- 2026年大件运输夜间作业合同
- 保密协议2026年财务信息合同
- 2026年汽车车身修复合同
- 2026年货运代理合同协议范本
- 2026年医疗健康管理服务合同
- 2026年商务汽车租赁合同
- 2026年室内设计效果图合同协议
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- 2025年巴楚县辅警招聘考试备考题库附答案
- GB/T 46793.1-2025突发事件应急预案编制导则第1部分:通则
- 老人再婚协议书
- 2025年九江理工职业学院单招职业适应性测试模拟测试卷附答案解析
- 广东省深圳市盐田高级中学2025-2026学年高三上学期12月末测试数学试题(含答案)
- 2025辽宁沈阳盛京资产管理集团有限公司所属子公司沈阳华海锟泰投资有限公司所属子公司招聘5人考试参考题库附答案
- 22为中华之崛起而读书 教学课件
- 2026年安全员之C证(专职安全员)考试题库500道附完整答案【网校专用】
- 2025山东劳动职业技术学院(山东劳动技师学院)招聘8人备考考试试题及答案解析
- 会计师事务所项目经理助理面试题及答案
评论
0/150
提交评论