浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题含解析_第1页
浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题含解析_第2页
浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题含解析_第3页
浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题含解析_第4页
浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市杭州七县市区2026届高二数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线与直线垂直,则a=()A.3 B.1或﹣3C.﹣1 D.3或﹣12.已知双曲线,则双曲线M的渐近线方程是()A. B.C. D.3.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.804.已知函数的部分图象与轴交于点,与轴的一个交点为,如图所示,则下列说法错误的是()A. B.的最小正周期为6C.图象关于直线对称 D.在上单调递减5.若直线与双曲线相交,则的取值范围是A. B.C. D.6.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件7.设,则的一个必要不充分条件为()A. B.C. D.8.下列直线中,倾斜角最大的为()A. B.C. D.9.设函数,则下列函数中为奇函数的是()A. B.C. D.10.若数列等差数列,a1=1,,则a5=()A. B.C. D.11.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或112.甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则______14.如图,一个酒杯的内壁的轴截面是抛物线的一部分,杯口宽cm,杯深8cm,称为抛物线酒杯.①在杯口放一个表面积为的玻璃球,则球面上的点到杯底的最小距离为______cm;②在杯内放入一个小的玻璃球,要使球触及酒杯底部,则玻璃球的半径的取值范围为______(单位:cm)15.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.16.若动直线分别与函数和的图像交于A,B两点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,双曲线C上除顶点外任一点满足直线RM与QM的斜率之积为4.(1)求C方程;(2)若直线l过C上的一点P,且与C的渐近线相交于A,B两点,点A,B分别位于第一、第二象限,,求的最小值.18.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.19.(12分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.20.(12分)已知各项均为正数的等比数列前项和为,且,.(1)求数列的通项公式;(2)若,求21.(12分)已知二次函数,.(1)若,求函数的最小值;(2)若,解关于x的不等式.22.(10分)某学校一航模小组进行飞机模型飞行高度实验,飞机模型在第一分钟时间内上升了米高度.若通过动力控制系统,可使飞机模型在以后的每一分钟上升的高度都是它在前一分钟上升高度的(1)在此动力控制系统下,该飞机模型在第三分钟内上升的高度是多少米?(2)这个飞机模型上升的最大高度能超过米吗?如果能,求出从第几分钟开始高度超过米;如果不能,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据,得出关于的方程,即可求解实数的值.【详解】直线与直线垂直,所以,解得或.故选:D.2、C【解析】由双曲线的方程直接求出见解析即可.【详解】由双曲线,则其渐近线方程为:故选:C3、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C4、D【解析】根据函数的图象求出,再利用函数的性质结合周期公式逆推即可求解.【详解】因为函数的图象与轴交于点,所以,又,所以,A正确;因为的图象与轴的一个交点为,即,所以,又,解得,所以,所以,求得最小正周期为,B正确;,所以是的一条对称轴,C正确;令,解得,所以函数在,上单调递减,D错误故选:D.5、C【解析】联立直线和双曲线的方程得到,即得的取值范围.【详解】联立直线和双曲线的方程得当,即时,直线和双曲线的渐近线重合,所以直线与双曲线没有公共点.当,即时,,解之得.故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.6、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.7、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.8、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D9、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A10、B【解析】令、可得等差数列的首项和第三项,即可求出第五项,从而求出.【详解】令得,令得,所以数列的公差为,所以,解得,故选:B.11、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.12、D【解析】利用相互独立事件概率乘法公式直接求解.【详解】甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的定义求解即可【详解】由,得,所以,故答案为:14、①.②.【解析】根据题意,,进而得,,故最小距离为;进而建立坐标系,得抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,此时设玻璃球轴截面所在圆的方程为,进而只需满足抛物线上的点到圆心的距离大于等于半径恒成立,再根据几何关系求解即可.【详解】因为杯口放一个表面积为的玻璃球,所以球的半径为,又因为杯口宽cm,所以如图1所示,有,所以,所以,所以,又因为杯深8cm,即故最小距离为如图1所示,建立直角坐标系,易知,设抛物线的方程为,所以将代入得,故抛物线方程为,当杯内放入一个小的玻璃球,要使球触及酒杯底部,如图2,设玻璃球轴截面所在圆的方程为,依题意,需满足抛物线上的点到圆心的距离大于等于半径恒成立,即,则有恒成立,解得,可得.所以玻璃球的半径的取值范围为.故答案为:;【点睛】本题考查抛物线的应用,考查数学建模能力,运算求解能力,是中档题.本题第二问解题的关键在于设出球触及酒杯底部的轴截面圆的方程,进而将问题转化为抛物线上的点到圆心的距离大于等于半径恒成立求解.15、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.16、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)由题意得,化简可得答案,(2)求出渐近线方程,设点,,,,,由可得,代入双曲线方程化简可得,然后表示的坐标,再进行数量积运算,化简后利用基本不等式可得答案【小问1详解】由题意得,即,整理得,因为双曲线的顶点坐标满足上式,所以C的方程为.【小问2详解】由(1)可知,曲线C的渐近线方程为,设点,,,,,由,得,整理得,①,把①代入,整理得②,因为,,所以.由,得,则,当且仅当时等号成立,所以的最小值是1.18、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.19、(1)(2)【解析】(1)设椭圆的左,右焦点分别为,.利用椭圆的定义求出,然后求解,得到椭圆方程;(2)当直线的斜率存在时,设,,,,,联立直线与椭圆方程,利用韦达定理以及弦长公式得到弦长的表达式,再通过换元利用二次函数的性质求解最值即可【小问1详解】依题意,设椭圆的左,右焦点分别为,则,,,,椭圆的方程为【小问2详解】当直线的斜率存在时,设,,,,由得由得由,得设,则,当直线的斜率不存在时,,的最大值为20、(1)(2)9【解析】(1)根据题意列出关于等比数列首项、公比的方程组即可解决;(2)利用等比数列的前项和的公式,解方程即可解决.【小问1详解】设各项均为正数的等比数列首项为,公比为则有,解之得则等比数列的通项公式.【小问2详解】由,可得21、(1)(2)当时,不等式的解集为当时,不等式的解集为当时,不等式的解集为【解析】(1)带入,将化解为,再利用基本不等式求最值即可;(2)将不等式移项整理为,再对a分类讨论,比较两根的大小,即可求得解集.【小问1详解】当a=3时,函数可整理为,因为,所以利用基本不等式,当且仅当,即时,y取到最小值.所以,当时,函数的最小值为.【小问2详解】将不等式整理为,令,即,解得两根为与1,因为,当时,即时,此时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论