2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题含解析_第1页
2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题含解析_第2页
2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题含解析_第3页
2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题含解析_第4页
2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省淮安市淮阴区高二数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.根据如下样本数据,得到回归直线方程,则x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.2.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个3.如图,两个半径为R的相交大圆,分别内含一个半径为r的同心小圆,且同心小圆均与另一个大圆外切.已知时,在两相交大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.4.已知函数,则()A.3 B.C. D.5.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.6.空间直角坐标系中、、)、,其中,,,,已知平面平面,则平面与平面间的距离为()A. B.C. D.7.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或8.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件9.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.1110.命题“若,则”为真命题,那么不可能是()A. B.C. D.11.若,满足约束条件则的最大值是A.-8 B.-3C.0 D.112.已知,则条件“”是条件“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线焦点坐标是,则______14.已知数列满足,,的前项和为,则______.15.如图,某河流上有一座抛物线形的拱桥,已知桥的跨度米,高度米(即桥拱顶到基座所在的直线的距离).由于河流上游降雨,导致河水从桥的基座处开始上涨了1米,则此时桥洞中水面的宽度为______米16.已知几何体如图所示,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在DG上,若直线MB与平面BEF所成的角为45°,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:18.(12分)已知椭圆的左焦点为F,右顶点为,M是椭圆上一点.轴且(1)求椭圆C的标准方程;(2)直线与椭圆C交于E,H两点,点G在椭圆C上,且四边形平行四边形(其中O为坐标原点),求19.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由20.(12分)已知直线经过点且斜率为(1)求直线的一般式方程(2)求与直线平行,且过点的直线的一般式方程(3)求与直线垂直,且过点的直线的一般式方程21.(12分)在平面直角坐标系中,已知点,,点满足,记点的轨迹为.(1)求的方程;(2)已知,是经过圆上一点且与相切的两条直线,斜率分别为,,直线的斜率为,求证:为定值.22.(10分)已知抛物线上任意一点到焦点F最短距离为2,(1)求抛物线C的方程;(2)过焦点F的直线,互相垂直,且与C分别交于A,B,M,N四点,求四边形AMBN面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出散点图,由散点图得出回归直线中的的符号【详解】作出散点图如图所示.由图可知,回归直线=x+的斜率<0,当x=0时,=>0.故选B【点睛】本题考查了散点图的概念,拟合线性回归直线第一步画散点图,再由数据计算的值2、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30

,综上,这样的平面α有2个,故选:B.3、C【解析】设D为线段AB的中点,求得,在中,可得.进而求得两大圆公共部分的面积为:,利用几何概型计算即可得出结果.【详解】如图,设D为线段AB的中点,,在中,.两大圆公共部分的面积为:,则该点取自两大圆公共部分的概率为.故选:C.4、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B5、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B6、A【解析】由已知得,,,设向量与向量、都垂直,由向量垂直的坐标运算可求得,再由平面平行和距离公式计算可得选项.【详解】解:由已知得,,,设向量与向量、都垂直,则,即,取,,又平面平面,则平面与平面间的距离为,故选:A.7、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同8、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.9、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.10、D【解析】根据命题真假的判断,对四个选项一一验证即可.【详解】对于A:若,则必成立;对于B:若,则必成立;对于C:若,则必成立;对于D:由不能得出,所以不可能是.故选:D11、C【解析】作出可行域,把变形为,平移直线过点时,最大.【详解】作出可行域如图:由得:,作出直线,平移直线过点时,.故选C.【点睛】本题主要考查了简单线性规划问题,属于中档题.12、A【解析】若命题,则p是q的充分不必要条件,q是p的必要不充分条件【详解】因为,所以,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据抛物线的几何性质直接求解可得.【详解】的焦点坐标为,即.故答案为:214、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.15、【解析】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则根据点在抛物线上,可得抛物线的方程,设水面与桥的交点坐标为,求出,进而可得水面的宽度.【详解】以桥的顶点为坐标原点,水平方向所在直线为x轴建立直角坐标系,则抛物线的方程为,因为点在抛物线上,所以,即故抛物线的方程为,设河水上涨1米后,水面与桥的交点坐标为,则,得,所以此时桥洞中水面的宽度为米故答案为:16、##【解析】把该几何体补成一个正方体,如图,利用正方体的性质证明面面垂直得出直线MB与平面BEF所成的角,然后计算可得【详解】把该几何体补成一个正方体,如图,,连接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面内的直线在平面上的射影是,即是直线MB与平面BEF所成的角,,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分18、(1)(2)【解析】(1)根据椭圆的简单几何性质即可求出;(2)设,联立与椭圆方程,求出,再根据平行四边形的性质求出点的坐标,然后由点G在椭圆C上,可求出,从而可得【小问1详解】∵椭圆C的右顶点为,∴,∵轴,且,∴,∴,所以椭圆C的标准方程为【小问2详解】设,将直线代入,消去y并整理得,由,得.(*)由根与系数的关系可得,∴,∵四边形为平行四边形,∴,得,将G点坐标代人椭圆C的方程得,满足(*)式∴19、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使得,则,其中,直线:,令得:,则,,解得:,其中,故,所以,所以或20、(1)(2)(3)【解析】(1)先写点斜式方程,再化一般式,(2)根据平行设一般式,再代点坐标得结果,(3)根据垂直设一般式,再代点坐标得结果.【详解】(1)(2)设所求方程为因为过点,所以(3)设所求方程为因为过点,所以【点睛】本题考查直线方程,考查基本分析求解能力,属基础题.21、(1);(2)证明见解析.【解析】(1)根据双曲线的定义可得答案;(2)设,过点的的切线方程为,联立此直线与双曲线的方程消元,然后由可得,即可得到,然后可证明.【小问1详解】因为,所以点的轨迹是以为焦点的双曲线的右支,所以,,所以,所以的方程为【小问2详解】设,则,设过点的切线方程为,联立可得由可得,所以所以22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论