安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题含解析_第1页
安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题含解析_第2页
安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题含解析_第3页
安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题含解析_第4页
安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省滁州市民办高中2026届数学高二上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列的公差,且,,则的通项公式是()A. B.C. D.2.如图,平行六面体中,为的中点,,,,则()A. B.C. D.3.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80004.直线的斜率是()A. B.C. D.5.与直线平行,且经过点(2,3)的直线的方程为()A. B.C. D.6.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.7.设平面向量,,其中m,,记“”为事件A,则事件A发生的概率为()A. B.C. D.8.向量,向量,若,则实数()A. B.1C. D.9.将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ值为()A.-3或7 B.-2或8C0或10 D.1或1110.设是双曲线与圆在第一象限的交点,,分别是双曲线的左,右焦点,若,则双曲线的离心率为()A. B.C. D.11.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.12.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.年月我国成功发射了第一颗人造地球卫星“东方红一号”,这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为,远地点(离地面最远的点)距地面的高度约为,且地心、近地点、远地点三点在同一直线上,地球半径约为,则卫星运行轨道是上任意两点间的距离的最大值为___________14.《九章算术》中的“两鼠穿墙题”是我国数学的古典名题.“今有城墙厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”题意是:“两只老鼠从城墙的两边相对分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半……”则小老鼠第三天穿城墙______尺;若城墙厚40尺,则至少在第________天相遇15.函数单调增区间为______.16.已知直线,,为抛物线上一点,则到这两条直线距离之和的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆上的点到焦点的最大距离为3,离心率为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,与轴交于点,且满足,若,求实数的取值范围.18.(12分)已知函数,为的导函数(1)求的定义域和导函数;(2)当时,求函数的单调区间;(3)若对,都有成立,且存在,使成立,求实数a的取值范围19.(12分)已知函数的导函数为,且满足(1)求及的值;(2)求在点处的切线方程20.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.21.(12分)如图,四棱锥P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分别是AC、PB的中点(1)证明:EF∥平面PCD;(2)求证:平面PBD⊥平面PAC22.(10分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由于数列为等差数列,所以,再由可得可以看成一元二次方程的两个根,由可知,所以,从而可求出,可得到通项公式.【详解】解:因为数列为等差数列,所以,因为,所以可以看成一元二次方程的两个根,因为,所以,所以,解得,所以故选:C【点睛】此题考查的是等差数列的通项公式和性质,属于基础题.2、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题3、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.4、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D5、C【解析】由直线平行及直线所过的点,应用点斜式写出直线方程即可.【详解】与直线平行,且经过点(2,3)的直线的方程为,整理得故选:C6、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.7、D【解析】由向量的数量积公式结合古典概型概率公式得出事件A发生的概率.【详解】由题意可知,即,因为所有的基本事件共有种,其中满足的为,,只有1种,所以事件A发生的概率为.故选:D8、C【解析】由空间向量垂直的坐标表示列方程即可求解.【详解】因为向量,向量,若,则,解得:,故选:C.9、A【解析】根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,解得λ=﹣3或7故选A考点:直线与圆的位置关系10、B【解析】先由双曲线定义与题中条件得到,,求出,,再由题意得到,即可根据勾股定理求出结果.【详解】解:根据双曲线定义:,,∴,∴,,,∴是圆的直径,∴,中,,得故选【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于常考题型.11、C【解析】依题意,直线与直线互相垂直,,,故选12、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意由a-c=439+6371,a+c=2384+6371,求得2a即可.【详解】设椭圆的长半轴长为a,半焦距为c,由题意得:a-c=439+6371,a+c=2384+6371,两式相加得:2a=15565,因为椭圆上任意两点间的距离的最大值为长轴长2a,所以卫星运行轨道是上任意两点间的距离的最大值为,故答案为:1556514、①.##0.25②.6【解析】由题意知小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,即可算出小老鼠第三天穿城墙的厚度,再根据等比数列求和公式,构造等式,即可得解.【详解】由题意知,小老鼠每天打洞的距离是以1为首项,以为公比的等比数列,前天打洞之和为,∴小老鼠第三天穿城墙的厚度为;大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列,前天打洞之和为,∴两只老鼠第天打洞穿墙的厚度之和为,且数列为递增数列,而,,又城墙厚40尺,所以这两只老鼠至少6天相遇.故答案为:;6.15、【解析】利用导数法求解.【详解】因为函数,所以,当时,,所以的单调增区间是,故答案为:16、【解析】过作,垂足分别为,由直线为抛物线的准线,转化,当三点共线时,取得最小值【详解】过作,垂足分别为抛物线的焦点为直线为抛物线的准线由抛物线的定义,故,当三点共线时,取得最小值故最小值为点到直线的距离:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),或【解析】(1)由椭圆的性质可知:,解得a和c的值,即可求得椭圆C的标准方程;(2)将直线方程代入椭圆方程,由韦达定理求得:,,λ,根据向量的坐标坐标,(x1+1,y1)=λ(x2+1,y2),求得,由,代入即可求得实数m的取值范围【详解】(1)由已知,解得,所以,所以椭圆的标准方程为.(2)由已知,设,联立方程组,消得,由韦达定理得①②因为,所以,所以③,将③代入①②,,消去得,所以.因为,所以,即,解得,所以,或.【点睛】本题考查椭圆的标准方程及简单性质,直线与椭圆的位置关系,韦达定理,向量的坐标表示,不等式的解法,考查计算能力,属于中档题18、(1),(2)在单减,也单减,无增区间(3)【解析】(1)根据分母不等于0,对数的真数大于零即可求得函数的定义域,根据基本初等函数的求导公式及商的导数公式即可求出函数的导函数;(2)求出函数的导函数,再根据导函数的符号即可得出答案;(3)若对,都有成立,即,即,令,,只要即可,利用导数求出函数的最小值即可求出的范围,,,求出函数的值域,根据存在,使成立,则0在函数的值域中,从而可得出的范围,即可得解.【小问1详解】解:的定义域为,;【小问2详解】解:当时,,恒成立,所以在和上递减;【小问3详解】解:若对,都有成立,即,即,令,,则,对于函数,,当时,,当时,,所以函数在上递增,在上递减,所以,当时,,所以,所以,故恒成立,在为减函数,所以,所以,由(1)知,,所以,记,令,,则原式的值域为,因为存在,使成立,所以,,所以,综上,【点睛】本题考查了函数的定义域及导数的四则运算,考查了利用导数求函数的单调区间,考查了不等式恒成立问题,考查了计算能力及数据分析能力,对不等式恒成立合理变形转化为求最值是解题关键.19、(1);;(2).【解析】(1)由题可得,进而可得,然后可得,即得;(2)由题可求,,再利用点斜式即得.【小问1详解】∵,∴,,∴,,∴.【小问2详解】∵,,∴,,∴在点处的切线方程为,即.20、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲线的左、右焦点坐标分别为、,直线的方程,与联立得,解得,代入的方程为分别解得.所以.【小问2详解】由(1)知,,,所以△的周长为.21、(1)证明见解析;(2)证明见解析.【解析】(1)连结,证明EF∥PD即可;(2)证明BD⊥平面PAC即可【小问1详解】连结,则是的中点,又是的中点,,又平面,面,平面【小问2详解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒22、(1)C:;D:;(2)①且;②见解析.【解析】(1)根据D的离心率为,求出从而求出双曲线的焦点,再由椭圆的焦点与双曲线的焦点相同,即可求出,即可求出C与D的方程;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论