版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省正定县第三中学2026届高一上数学期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,,则=()A. B.C. D.2.已知,则的值是A. B.C. D.3.已知函数,则使得成立的的取值范围是()A. B.C. D.4.命题“”为真命题的一个充分不必要条件是()A. B.C. D.5.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R6.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.7.设非零向量、、满足,,则向量、的夹角()A. B.C. D.8.函数的零点所在的一个区间是()A. B.C. D.9.已知,若,则x的取值范围为()A. B.C. D.10.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________________12.三条直线两两相交,它们可以确定的平面有______个.13.若函数在上单调递减,则实数a的取值范围为___________.14.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.15.设函数是以4为周期的周期函数,且时,,则__________16.中,若,则角的取值集合为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)若函数的最小值为,求的值.18.已知函数fx(1)求fx定义域;(2)判断函数fx(3)若fx≤log2mx+5对于19.脱贫是政府关注民生的重要任务,了解居民的实际收入状况就显得尤为重要.现从某地区随机抽取个农户,考察每个农户的年收入与年积蓄的情况进行分析,设第个农户的年收入(万元),年积蓄(万元),经过数据处理得(Ⅰ)已知家庭的年结余对年收入具有线性相关关系,求线性回归方程;(Ⅱ)若该地区的农户年积蓄在万以上,即称该农户已达小康生活,请预测农户达到小康生活的最低年收入应为多少万元?附:在中,其中为样本平均值.20.已知不等式的解集为A,不等式的解集为B.(1)求A∩B;(2)若不等式的解集为A∩B,求的值21.求函数在区间上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B2、C【解析】由可得,化简则,从而可得结果.【详解】,,故选C.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角3、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.4、D【解析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为,故选:D.5、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理6、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)7、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B8、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B9、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.10、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,区间为.考点:函数的定义域12、1或3【解析】利用平面的基本性质及推论即可求出.【详解】设三条直线为,不妨设直线,故直线与确定一个平面,(1)若直线在平面内,则直线确定一个平面;(2)若直线不在平面内,则直线确定三个平面;故答案为:1或3;13、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:14、【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则或,解得.故答案为:【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.16、【解析】△ABC中,由tanA=1,求得A的值【详解】∵△ABC中,tanA=1>0,故∴A=故答案为【点睛】本题主要考查三角函数的化简,及与三角形的综合,应注意三角形内角的范围三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由即可求解;(2)先整理,利用复合函数单调性即可求出的最小值,令最小值等于4解方程即可.【详解】(1)若有意义,则,解得,故的定义域为;(2)由于令,则∵时,在上是减函数,∴又,则,即,解得或(舍)故若函数的最小值为,则.【点睛】关键点点睛:本题在解题的过程中要注意定义域,关键在于的范围和的单调性.18、(1)x(2)函数fx(3)-2【解析】(1)解不等式4-x(2)根据奇偶性的定义直接判断即可;(3)根据题意,将问题转化为4-x2≤mx+5且mx+5>0【小问1详解】解:由题知4-x2>0所以函数fx=【小问2详解】解:函数为偶函数,证明如下:由(1)知函数定义域关于原点对称,所以f-x所以函数为偶函数.【小问3详解】解:因为fx≤log即log24-x所以4-x2≤mx+5且mx+5>0所以m≥-1x-x且m>由于-1x-x=-y=-5x在x∈0,2所以m≥-2且m≥-52,即所以实数m的取值范围是-2,+∞,最小值19、(Ⅰ);(Ⅱ)万元.【解析】(Ⅰ)利用题中所给数据和最小二乘法求出相关系数,进而求出线性回归方程;(Ⅱ)利用线性回归方程进行预测.试题解析:(Ⅰ)由题意知所以线性回归方程为(Ⅱ)令得由此可预测该农户的年收入最低为万元.20、(1)A∩B={x|-1<x<2};(2).【解析】(1)将集合A,B进行化简,再根据集合的交集运算即可求得结果;(2)由题意知-1,2为方程的两根,代入方程联立方程组,即可解得结果.试题解析:解:(1)A={x|-1<x<3},B={x|-3<x<2},∴(2)-1,2为方程x2+ax+b=0的两根∴∴.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 规范政治理论学习制度
- 电子围栏上墙制度规范
- 电源审核制度规范要求
- 档案设备管理制度规范
- 规范管理校园出物制度
- 核酸采样规范管理制度
- 废弃矿洞封堵合同范本
- 承接工地钢材合同范本
- 工人雇佣合同协议模板
- 外研版(2024)七年级上册英语期末复习:书面表达 专项练习题(含答案+范文)
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库附答案详解
- 盘州市教育局机关所属事业单位2025年公开考调工作人员备考题库完整答案详解
- 2025-2026四年级上科学期末检测试题
- 辽宁省鞍山市2025-2026学年八年级上学期1月期末语文试卷
- 班级演唱会课件
- 2025马年元旦新春晚会活动策划
- 交警新警执法培训
- 急性毒性测试:类器官芯片的快速响应
- 骨科护理标准操作流程手册
- 产品推广专员培训
- DB65T 3119-2022 建筑消防设施管理规范
评论
0/150
提交评论