版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省白银市会宁四中2026届数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则A. B.C. D.2.下列函数中,是奇函数,又在定义域内为减函数是()A. B.C. D.3.向量“,不共线”是“|+|<||+||”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.幂函数y=xa,当a取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xa,y=xb的图象三等分,即有BM=MN=NA,那么=()A.0 B.1C. D.25.设集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},则AB中所有元素之积A.-8B.-16C.8D.166.已知正实数x,y,z,满足,则()A. B.C. D.7.为了得到函数的图象,可以将函数的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.与角的终边相同的最小正角是()A. B.C. D.9.已知,,则的值等于()A. B.C. D.10.为了抗击新型冠状病毒肺炎,保障师生安全,学校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中含药量y()与时间t(h)成正比();药物释放完毕后,y与t的函数关系式为(a为常数,),据测定,当空气中每立方米的含药量降低到0.5()以下时,学生方可进教室,则学校应安排工作人员至少提前()分钟进行消毒工作A.25 B.30C.45 D.60二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数是定义在的偶函数,且当时,若函数有8个零点,分别记为,,,,,,,,则的取值范围是______.12.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________13.在中,,BC边上的高等于,则______________14.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.15.若偶函数在区间上单调递增,且,,则不等式的解集是___________.16.设向量不平行,向量与平行,则实数_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是两个不共线的非零向量.(1)若求证:A,B,D三点共线;(2)试求实数k的值,使向量和共线.18.如图是函数的部分图象.(1)求函数的解析式;(2)若,,求.19.某手机生产商计划在2022年利用新技术生产某款新手机,通过市场分析,生产此款手机全年需投入固定成本200万元,每生产(千部)手机,需另投人成本万元,且,由市场调研知,每部手机售价0.5万元,且全年内生产的手机当年能全部销售完.(1)求出2022年的利润(万元)关于年产量(千部)的函数关系式;(利润销售额成本)(2)2022年产量为多少千部时,该生产商所获利润最大?最大利润是多少?20.已知函数.(1)求函数的最小正周期;(2)求函数的最大值.21.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质2、C【解析】是非奇非偶函数,在定义域内为减函数;是奇函数,在定义域内不单调;y=-x3是奇函数,又在定义域内为减函数;非奇非偶函数,在定义域内为减函数;故选C3、A【解析】利用向量的线性运算的几何表示及充分条件,必要条件的概念即得.【详解】当向量“,不共线”时,由向量三角形的性质可得“|+|<||+||”成立,即充分性成立,当“,方向相反”时,满足“|+|<||+||”,但此时两个向量共线,即必要性不成立,故向量“,不共线”是“|+|<||+||”的充分不必要条件.故选:A.4、A【解析】由题意得,代入函数解析式,进而利用指对互化即可得解.【详解】BM=MN=NA,点A(1,0),B(0,1),所以,将两点坐标分别代入y=xa,y=xb,得所以,所以.故选:A.【点睛】本题主要考查了幂函数的图像及对数的运算,涉及换底公式,属于基础题.5、C【解析】∵集合A={-2,1},B={-1,2},定义集合AB={x|x=x1x2,x1∈A,x2∈B},∴AB={2,-4,-1},故AB中所有元素之积为:2×(-4)×(-1)=8故选C6、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.7、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.8、D【解析】写出与角终边相同的角的集合,即可得出结论.【详解】与角终边相同角的集合为,当时,取得最小正角为.故选:D.9、B【解析】由题可分析得到,由差角公式,将值代入求解即可【详解】由题,,故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题10、C【解析】计算函数解析式,取计算得到答案.【详解】∵函数图像过点,∴,当时,取,解得小时分钟,所以学校应安排工作人员至少提前45分钟进行消毒工作.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由偶函数的对称性,将转化为,再根据二次函数的对称性及对数函数的性质可进一步转化为,结合利用二次函数的性质即可求解.【详解】解:因为函数有8个零点,所以直线与函数图像交点有8个,如图所示:设,因为函数是定义在的偶函数,所以函数的图像关于轴对称,所以,且由二次函数对称性有,由有,所以又,所以,所以,故答案为:.12、【解析】13、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:15、【解析】根据题意,结合函数的性质,分析可得在区间上的性质,即可得答案.【详解】因为偶函数在区间上单调递增,且,,所以在区间上单调上单调递减,且,所以的解集为.故答案为:16、-2【解析】因为向量与平行,所以存在,使,所以,解得答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)利用向量共线定理证明向量与共线即可;(2)利用向量共线定理即可求出【详解】(1)∵,∴//,又有公共点B∴A、B、D三点共线(2)设,化为,∴,解得k=±118、(1)(2)【解析】(1)由图象得到,且,得到,结合五点法,列出方程求得,即可得到函数的解析式;(2)由题意,求得,,结合利用两角和的正弦公式,即可求解.【小问1详解】解:由图象可得,函数的最大值为,可得,又由,可得,所以,所以,又由图可知是五点作图法中的第三个点,因为,可得,因为,所以,所以.【小问2详解】解:因为,则,又因为,所以,由,则,有,所以.19、(1)(2)2022年产量为千部时,该生产商所获利润最大,最大利润是3800万元【解析】(1)根据题意,建立分段函数模型得;(2)结合(1)的函数模型,分类讨论求解最值即可得答案.【小问1详解】解:销售千部手机获得的销售额为:当时,;当时,故,【小问2详解】解:当时,,当时,,当时,,当且仅当,即时,等号成立,因为,所以当(千部)时,所获利润最大,最大利润为:3800万元.20、(1)(2)4【解析】(1)根据余弦函数的周期公式,求得答案;(2)根据余弦函数的性质,可求得函数f(x)的最大值.【小问1详解】由题意可得:函数的最小正周期为:;【小问2详解】因为,故,即的最大值为4.21、(1),(2)【解析】(1)根据正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职汽车运用与维修技术(汽车发动机维修)试题及答案
- 2025年高职(国际商务)国际结算实务专项测试试题及答案
- 2025年高职艺术设计学(设计教学设计)试题及答案
- 2025年大学工程管理(工程项目管理)试题及答案
- 2025年大学大四(生物技术)分子生物学实验技术测试题及答案
- 多模态纳米探针用于复杂疾病诊断
- 2026年算网一体化编排系统项目可行性研究报告
- 2025年中职连接成形(焊接技术基础)试题及答案
- 2026年言语康复(语言障碍矫正)试题及答案
- 2025年大学护理(急诊科护理知识)试题及答案
- 神经内科品管圈成果汇报-提高脑卒中偏瘫患者早期自我肢体功能锻炼规范执行率
- 缺血性脑卒中静脉溶栓护理
- 电子电路基础-电子科技大学中国大学mooc课后章节答案期末考试题库2023年
- 四年级科学上册期末试卷及答案-苏教版
- DB51T 2875-2022彩灯(自贡)工艺灯规范
- 小学数学人教版六年级上册全册电子教案
- 主要负责人重大危险源安全检查表
- 《工程经济学》模拟试题答案 东北财经大学2023年春
- 2023-2024学年广西壮族自治区来宾市小学数学五年级下册期末自测试卷
- 2023年福海县政务中心综合窗口人员招聘笔试模拟试题及答案解析
- GB/T 25129-2010制冷用空气冷却器
评论
0/150
提交评论