九年级数学期末真题必刷压轴60题(25个考点专练)原卷版_第1页
九年级数学期末真题必刷压轴60题(25个考点专练)原卷版_第2页
九年级数学期末真题必刷压轴60题(25个考点专练)原卷版_第3页
九年级数学期末真题必刷压轴60题(25个考点专练)原卷版_第4页
九年级数学期末真题必刷压轴60题(25个考点专练)原卷版_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期末真题必刷压轴60题(25个考点专练)一.根与系数的关系(共3小题)1.(环翠区期末)已知:关于x的方程x2+(8﹣4m)x+4m2=0.(1)若方程有两个相等的实数根,求m的值,并求出这时方程的根.(2)问:是否存在正数m,使方程的两个实数根的平方和等于136?若存在,请求出满足条件的m值;若不存在,请说明理由.2.(安顺期末)设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.3.(宿城区期末)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取什么实数值,这个方程总有实数根;(2)能否找到一个实数k,使方程的两实数根互为相反数?若能找到,求出k的值;若不能,请说明理由.(3)当等腰三角形ABC的边长a=4,另两边的长b、c恰好是这个方程的两根时,求△ABC的周长.二.一元二次方程的应用(共3小题)4.(武胜县校级期末)如图,△ABC中,∠C=90°,BC=5厘米,AB=5厘米,点P从点A出发沿AC边以2厘米/秒的速度向终点C匀速移动,同时,点Q从点C出发沿CB边以1厘米/秒的速度向终点B匀速移动,P、Q两点运动几秒时,P、Q两点间的距离是2厘米?5.(甘井子区校级期末)青山村种的水稻2010年平均每公顷产7200kg,2012年平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.6.(惠阳区校级期末)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.三.反比例函数与一次函数的交点问题(共3小题)7.(阳曲县期末)如图,一次函数y=kx+b与反比例函数y=的图象交于A(﹣1,3),B(3,a)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(2)求S△AOB.8.(莘县校级期末)如图,Rt△ABO的顶点A是双曲线与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(3)直接写出的解集.9.(岳阳县期末)如图已知函数y=(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD的面积为2.(1)求k的值及x0=4时m的值;(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=OD•DC,若﹣<m<﹣,求[m2•t]值.四.反比例函数的应用(共2小题)10.(沙依巴克区校级期末)在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.(1)设矩形的相邻两边长分别为x,y.①求y关于x的函数表达式;②当y≥3时,求x的取值范围;(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?11.(邯山区校级期末)家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加kΩ.(1)求当10≤t≤30时,R和t之间的关系式;(2)求温度在30℃时电阻R的值;并求出t≥30时,R和t之间的关系式;(3)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过6kΩ?五.抛物线与x轴的交点(共2小题)12.(扶风县期末)二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(﹣1,0),与y轴交于点C(0,﹣5),且经过点D(3,﹣8).(1)求此二次函数的解析式;(2)将此二次函数的解析式写成y=a(x﹣h)2+k的形式,并直接写出顶点坐标以及它与x轴的另一个交点B的坐标.(3)利用以上信息解答下列问题:若关于x的一元二次方程ax2+bx+c﹣t=0(t为实数)在﹣1<x<3的范围内有解,则t的取值范围是.13.(鼓楼区校级期末)如图,抛物线y=ax2+bx﹣6交x轴于A(2,0),B(﹣6,0)两点,交y轴于点C,点Q为线段BC上的动点.(1)求抛物线的解析式;(2)求QA+QO的最小值;(3)过点Q作QP∥AC交抛物线的第三象限部分于点P,连接PA,PB,记△PAQ与△PBQ的面积分别为S1,S2,设S=S1+S2,当时,求点P的坐标.六.二次函数的应用(共2小题)14.(大理州期末)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.15.(华容区期末)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)七.二次函数综合题(共19小题)16.(绵阳期末)如图,抛物线的图象与x轴交于A,B两点,A(﹣1,0),对称轴是直线x=1,与y轴交于点C(0,).(1)求抛物线的解析式;(2)如图,矩形DEFG的边DE在x轴上,顶点F,G在x轴上方的抛物线上,设点D的横坐标为d,当矩形DEFG的周长取最大值时,求d,并求矩形DEFG的周长的最大值;(3)在(2)的结论下,直线DG上是否存在点M,使得∠GMF=2∠DEM,若存在,求出M的坐标;若不存在,请说明理由.17.(德城区期末)如图1,直线y=﹣2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B.(1)请直接写出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设D点横坐标为m.①如图2,连接BD,CD,BC,求△BDC面积的最大值;②如图3,连接OD,将线段OD绕O点顺时针旋转90°,得到线段OE,过点E作EF∥x轴交直线AC于F.求线段EF的最大值及此时点D的坐标.18.(大洼区期末)如图①,在平面直角坐标系中,抛物线P:y=﹣x2+bx+c的图象与x轴交于点A,B,与y轴交于点C,且图象与抛物线Q:y=x2+2x﹣3的图象关于原点中心对称.(1)求抛物线P的表达式;(2)连接BC,点D为线段BC上的一个动点,过点D作DE∥y轴,交抛物线P的图象于点E,求线段DE长度的最大值;(3)如图②,在抛物线P的对称轴上是否存在点M,使△MOB是等腰三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.19.(大冶市期末)抛物线y=﹣x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点.(1)直接写出A,B,C三点的坐标为A,B,C;(2)连接AP,CP,AC,若S△APC=2,求点P的坐标;(3)连接AP,BC,是否存在点P,使得∠PAB=∠ABC,若存在,求出点P的坐标,若不存在,请说明理由.20.(滕州市期末)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)若点E是线段BC上的一个动点,平行于y轴的直线EF交抛物线于点F,求△FBC面积的最大值;(3)设点P是(1)中抛物线上的一个动点,是否存在满足S△PAB=6的点P?如果存在,请求出点P的坐标;若不存在,请说明理由.21.(望城区期末)如图①,抛物线y=ax2+x+c,与x轴交于A,B两点(A在B的左边),与y轴交于C点,顶点为E,其中,点A坐标为(﹣1,0),对称轴为x=2.(1)求此抛物线解析式;(2)在第四象限的抛物线上找一点F,使S△FBC=S△ACB,求点F的坐标;(3)如图②,点P是x轴上一点,点E与点H关于点P成中心对称,点B与点Q关于点P成中心对称,当以点Q,H,E为顶点三角形是直角三角形时,求P的坐标.22.(雄县期末)已知抛物线G:y=﹣+kx+4(k为常数)与x轴交于点A,B(点A在点B的左侧),与y轴的正半轴交于点C.(1)当k=1时,如图所示:①抛物线G的对称轴为直线,点A的坐标为;②在x轴正半轴上从左到右有D,E两点,且DE=1,从点E向上作EF⊥x轴,且EF=2,在△DEF沿x轴左右平移时,若抛物线G与边DF(包括端点)有交点,求点F横坐标的最大值比最小值大多少?(2)当抛物线G的顶点P的纵坐标yP取得最小值时,求此时抛物线G的函数解析式;(3)当k<0,且x≥k时,抛物线G的最高点到直线l:y=7的距离为2,直接写出此时k的值.23.(泉州期末)已知抛物线C1:y=ax2﹣2ax﹣1与x轴只有一个交点.(1)求抛物线的解析式;(2)将抛物线C1向上平移4个单位长度得到抛物线C2.抛物线C2与x轴交于A、B两点(其中A点在左侧,B点在右侧),与y轴交于点C,连结BC.D为第一象限内抛物线C2上的一个动点.①若△BOC的面积是△BDC面积的倍,求D的坐标;②抛物线C2的对称轴交x轴于点G,过D作DE⊥BC交BC于E,交x轴于F.当点F在线段OG上时,求的取值范围.24.(雁塔区校级期末)如图,在平面直角坐标系中,二次函数y=﹣+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点B的坐标是(﹣8,0),点P(m,n)为该二次函数在第二象限内图象上的动点,点D为(0,4),连接BD.(1)求该二次函数的表达式;(2)依题补图1:连接OP,过点P作PQ⊥x轴于点Q;当△OPQ和△OBD相似时,求m的值;(3)如图2,过点P作直线PQ∥BD,和x轴交点为Q,在点P沿着抛物线从点A到点B运动过程中,当PQ与抛物线只有一个交点时,求点Q的坐标.25.(福清市校级期末)已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;(2)若抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;(3)设抛物线的对称轴与直线BC的交点为T,Q为线段BT上一点,直接写出|QA﹣QO|的取值范围.26.(丰都县期末)如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+4经过A(﹣1,3),与y轴交于点C,经过点C的直线与抛物线交于另一点E(6,m),点M为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求直线CE的解析式;(2)如图2,点P为直线CE上方抛物线上一动点,连接PC,PE.当△PCE的面积最大时,求点P的坐标以及△PCE面积的最大值.(3)如图3,将点D右移一个单位到点N,连接AN,将(1)中抛物线沿射线NA平移得到新抛物线y′,y′经过点N,y′的顶点为点G,在新抛物线y′的对称轴上是否存在点H,使得△MGH是等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.27.(南川区期末)如图1,在平面直角坐标系中,二次函数y=ax2+bx﹣3(a≠0)的图象与x轴于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)当动点P运动到什么位置时,使四边形ACPB的面积最大,求出此时四边形ACPB的面积最大值和P的坐标;(3)如图2,点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、A、C为顶点的四边形是菱形?若存在,请直接写出所有M点的坐标;若不存在,请说明理由.28.(兴县期末)综合与探究如图1,已知抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A在点B左边),与y轴交于点C.点D(m,n)是线段BC上的动点,过点D作DE⊥x轴垂足为E.(1)请直接写出点A,B,C坐标以及直线BC的解析式;(2)若△ADE的面积为S,请求出S关于m的函数关系式,并求出当m的值为多少时,S的值最大?最大值为多少?(3)如图2,将△ADE以点D为中心,顺时针旋转90°得到△A'DE'(点A与点A′对应),则当A′恰好落在抛物线上时,求出此时点D的坐标.29.(延边州期末)如图,抛物线y=﹣x2+bx+c经过点A(﹣1,0),点B(3,0),与y轴交于点C,点D在射线CO上运动,过点D作直线EF∥x轴,交抛物线于点E,F(点E在点F的左侧).(1)求该抛物线的解析式和对称轴;(2)若EF=2OC,求点E的坐标;(3)若抛物线的顶点关于直线EF的对称点为点P,当点P到x轴的距离等于1时,求出所有符合条件的线段EF的长;(4)以点D为旋转中心,将点B绕点D顺时针旋转90°得到点B′,直接写出点B′落在抛物线上时点D的坐标.30.(青秀区校级期末)如图1,抛物线y=ax2+x+c与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的—个动点,使△PBC的面积等于△ABC面积的,求点P的坐标;(3)过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象(如图2),请你结合新图象解答:当直线y=﹣x+d与新图象只有一个公共点Q(m,n),且n≥﹣8时,求d的取值范围.31.(鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.32.(长沙期末)如图1,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)若点D是直线AC上方抛物线上一动点,连接BC,AD和BD,BD交AC于点M,设△ADM的面积为S1,△BCM的面积为S2,当S1﹣S2=1时,求点D的坐标;(3)如图2,若点P是抛物线上一动点,过点P作PQ⊥x轴交直线AC于Q点,请问在y轴上是否存在点E,使以P,Q,E,C为顶点的四边形是菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.33.(渝中区校级期末)如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,其中A(﹣3,0),∠ACB=90°.(1)求该抛物线的函数解析式;(2)点P是直线AC上方抛物线上的一动点,过P作PM⊥AC于M点,在射线MA上取一点N,使得2MN=AC,连接PN,求△PMN面积的最大值及此时点P的坐标;(3)如图2,在(2)中△PMN面积取得最大值的条件下,将抛物线向左平移,当平移后的抛物线过点P时停止平移,平移后点C的对应点为C',D为原抛物线上一点,E为直线AC上一点,若以O、C′、D、E为顶点的四边形为平行四边形,求符合条件的D点横坐标.34.(仓山区校级期末)如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴分别交于A(1﹣m,0),B(m﹣3,0)两点,其中点B在原点左侧,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)已知抛物线顶点为P,点M在第三象限的抛物线上,①若直线CM与直线BP关于直线y=x对称,求点M的坐标;②如图2,若直线y=2x+n与抛物线交于点D,E,﹣1<xD<xE,与抛物线的对称轴l交于点H,若DM⊥l,连接ME,MH,求S△MEH的取值范围.八.等边三角形的性质(共1小题)35.(渠县校级期末)在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).九.圆内接四边形的性质(共1小题)36.(新城区期末)如图,已知四边形ABCD内接于圆O,连接BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.一十.直线与圆的位置关系(共1小题)37.(亭湖区期末)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°,得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度.一十一.切线的性质(共1小题)38.(河西区校级期末)已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(Ⅰ)如图①,若∠BAC=25°,求∠AMB的大小;(Ⅱ)如图②,过点B作BD⊥AC于E,交⊙O于点D,若BD=MA,求∠AMB的大小.一十二.切线的判定(共1小题)39.(莘县校级期末)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.一十三.切线的判定与性质(共1小题)40.(北林区期末)如图,AB是⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,CD=4,求BD的长.一十四.圆的综合题(共2小题)41.(江门校级期末)如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.(1)求证:直线AE是⊙O的切线.(2)若CD=6,AB=16,求⊙O的半径;(3)在(2)的基础上,点F在⊙O上,且=,△ACF的内心点G在AB边上,求BG的长.42.(海珠区校级期末)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连接CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.一十五.旋转的性质(共2小题)43.(遂平县期末)如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.44.(武冈市期末)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.一十六.作图-旋转变换(共1小题)45.(万源市校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标都在格点上,且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1;(2)P(a,b)是△ABC的AC边上一点,将△ABC平移后点P的对应点P'(a+2,b﹣6),请画出平移后的△A2B2C2;(3)若△A1B1C1和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.一十七.平行线分线段成比例(共1小题)46.(祁阳县期末)阅读下面材料:小波遇到这样一个问题:如图1,在△ABC中,BE是AC边上的中线,点D在BC边上,AD与BE相交于点P.(1)小波发现,,过点C作CF∥AD,交BE的延长线于点F,通过构造△CEF(如图2),经过推理和计算得到的值为.(2)参考小波思考问题的方法,解决问题:①如图3,在△ABC中,点D在BC的延长线上,,点E在AC上,且,求的值;②如图4,在△ABC中,点D在BC的延长线上,,点E在AC上,且,求出的值.一十八.相似三角形的判定(共2小题)47.(城关区校级期末)如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.48.(鼓楼区校级期末)如图1,在△ABC中,∠ACB=90°,AB=10,AC=8,CD⊥AB.如果以AB所在直线为x轴,CD所在直线为y轴,点D为坐标原点O,建立平面直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q从B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒.(1)当t为何值时,以点B、P、Q为顶点的三角形的面积为2?(2)是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出t的值;若不存在,请说明理由.一十九.相似三角形的判定与性质(共4小题)49.(渠县校级期末)小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),试探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.50.(宣汉县校级期末)如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,点D、E分别在线段BC、AC上运动,并保持∠ADE=45°(1)当△ADE是等腰三角形时,求AE的长;(2)当时,求DE的长.51.(叙州区期末)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.(2)如果AB>AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=,BC=3,CD=x,求线段CP的长.(用含x的式子表示)52.(凤凰县期末)如图,AB是⊙O的直径,=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.二十.解直角三角形的应用(共1小题)53.(新化县期末)每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB(假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的顶部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)二十一.解直角三角形的应用-坡度坡角问题(共1小题)54.(海口期末)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)二十二.解直角三角形的应用-仰角俯角问题(共2小题)55.(朝阳期末)如图,山坡AB的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD,在点B处测量计时牌的顶端C的仰角是45°,在点A处测量计时牌的底端D的仰角是60°,求这块倒计时牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)56.(益阳期末)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)二十三.列表法与树状图法(共1小题)57.(桃城区校级期末)“五•一”假期,梅河公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图.根据统计图回答下列问题:(1)前往A地的车票有张,前往C地的车票占全部车票的%;(2)若公司决定采用随机抽取的方式把车票分配给100名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?二十四.游戏公平性(共2小题)58.(南昌县期末)在一个不透明的口袋中放有4个完全相同的小球,他们分别标有数字﹣1,2,3,5.小明先随机摸出一个小球,记下数字为x;小强再随机摸出一个小球,记下数字为y.小明小强共同商议游戏规则为:当x>y时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,请用列表或画树状图的方法求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,请问这个游戏规则是公平的吗?请说明理由.59.(通川区校级期末)如图,一个均匀的转盘被平均分成8等份,分别标有“1,2,3,4,5,6,7,8”这8个数字,转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:甲、乙两个人参与游戏,甲转动转盘,乙猜数,若猜的数与转盘转出的数相符,则乙获胜;若结果不相符,则甲获胜.(若指针恰好指在分割线上,那么重转一次).(1)如果乙猜是“数9”,则乙获胜的概率为;(2)如果乙猜是“3的倍数”,则甲获胜的概率是;(3)如果乙猜是“偶数”,这个游戏对双方公平吗?请说明理由;(4)如果你是乙,请设计一种猜数方法,使自己获胜的可能性较大.二十五.利用频率估计概率(共1小题)60.(莱山区期末)某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?期末综合训练一、选择题1.下列叙述正确的是()A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.某种彩票的中奖率为17C.掷一枚质地均匀的硬币正面朝上是必然事件D.“某班50名同学中恰有2名同学生日是同一天”是随机事件2.下列图形中,既是轴对称图形又是中心对称图形的是()3.若关于x的一元二次方程(a-1)x2+3x-2=0有实数根,则实数a的取值范围是()A.a>-18 B.a≥-C.a>-18,且a≠1 D.a≥-18,且a4.若二次函数y=ax2+1的图象经过点(-2,0),则关于x的方程a(x-2)2+1=0的实数根为()A.x1=0,x2=4 B.x1=-2,x2=6C.x1=32,x2=52 D.x1=-4,x25.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x的增大而增大.其中结论正确的个数是()A.4 B.3 C.2 D.16.如图,Rt△ABC的内切圆☉O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作☉O的切线MN与AB,BC分别交于点M,N.若☉O的半径为r,则Rt△MBN的周长为()A.r B.32r C.2r D.57.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格,向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°.其中,能将△ABC变换后与△PQR重合的是()A.①② B.①③ C.②③ D.①②③8.已知圆上一段弧长为5πcm,它所对的圆心角为100°,则该圆的半径为()A.6cm B.9cm C.12cm D.18cm9.如图,四边形ABCD内接于☉O,连接BD.若AC=BC,∠BDC=50°,则∠ADC的度数是(A.125° B.130°C.135° D.140°10.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式为()A.y=-x-522−C.y=-x-522−11.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为()A.16 B.13 C.12 12.某校校园内有一个大正方形花坛,如图甲所示,由四个边长均为3m的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1m,AE=AF=xm,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()二、填空题13.请写出符合条件:一个根为x=1,另一个根满足-1<x<1的一元二次方程.

14.抛物线y=-2(x+5)2-3的对称轴是直线.

15.两个全等的三角尺重叠摆放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转到△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.

16.在-3,-2,1,2,3五个数中随机选取一个数作为二次函数y=ax2+4x-2中a的值,则该二次函数图象开口向上的概率是.

17.如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的☉O与BC边相切于点E,则☉O的半径为.

18.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,若OA=3,OC=1,分别连接AC,BD,则图中阴影部分的面积为.

三、解答题19.某小区为了促进生活垃圾的分类处理,将生活垃圾分为:可回收物、厨余垃圾、其他垃圾三类,分别记为A,B,C,并且设置了相应的垃圾箱,依次记为a,b,c.(1)若将三类垃圾随机投入三个垃圾箱,请你用画树状图的方法求垃圾投放正确的概率;(2)为了调查小区垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总重500kg的生活垃圾,数据如下(单位:kg):种类abcA401510B6025040C151555试估计“厨余垃圾”投放正确的概率.20.如图,已知△OAB的顶点A(-6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.(1)写出C,D两点的坐标;(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;(3)求证:AB⊥BE.21.(1)根据要求,解答下列问题:①方程x2-2x+1=0的解为;

②方程x2-3x+2=0的解为;

③方程x2-4x+3=0的解为;

……(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x+8=0的解为;

②关于x的方程的解为x1=1,x2=n.

(3)请用配方法解方程x2-9x+8=0,并验证猜想结论的正确性.22.如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0).(1)当α=60°时,△CBD的形状是;

(2)当AH=HC时,求直线FC的解析式.23.如图,已知AB是☉O的直径,点C,D在☉O上,点E在☉O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是☉O的切线;(3)当BC=4时,求劣弧AC的长.24.已知点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为0,14a,直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为N.求证:MF=MN+OF.25.如图,☉O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE,AC交BD于点H,DO及延长线分别交AC,BC于点G,F.(1)求证:DF垂直且平分AC;(2)求证:FC=CE;(3)若弦AD=5cm,AC=8cm,求☉O的半径.期末综合训练一、选择题1.D2.A3.D4.A5.B6.C连接OD,OE(图略),因为☉O是Rt△ABC的内切圆,所以OD⊥AB,OE⊥BC.又因为MD,MP都是☉O的切线,且D,P是切点,所以MD=MP,同理可得NP=NE.故CRt△MBN=MB+BN+NM=MB+BN+NP+PM=MB+MD+BN+NE=BD+BE=2r.7.D①②③三种变换都能将△ABC变换后与△PQR重合.8.B根据弧长公式l=nπR1809.B10.A抛物线y=x2+5x+6=x+522−14,顶点坐标为-52,-14,将其绕原点旋转180°后,顶点坐标变为52,14,开口方向向下,抛物线的形状没有发生变化11.B随机闭合开关K1,K2,K3中的两个有3种可能结果,分别为K1,K2;K1,K3;K2,K3.其中,能让两盏灯泡同时发光的结果有1种,所以所求概率为1312.AS△AEF=12AE·AF=12x2,S△DEG=12DG·DE=12×1×(3-x)=3-x2,S五边形EFBCG=S正方形ABCD-S△AEF-S△DEG=9-12x2-3-x2=-12x2+12x+152,则∵0<AE<AD,∴0<x<3,综上可得y=-2x2+2x+30(0<x<3).二、填空题13.x2-x=0(答案不唯一)14.x=-515.23因为AC=DC,∠D=60°,∠B=30°,所以△ADC是等边三角形,∠ACF=30°.因为∠B=30°,AB=8,所以∠CAF=60°,AC=4,进而可求CF=23cm.16.317.254如图,连接EO并延长交AD于点H,连接∵四边形ABCD是矩形,☉O与BC边相切于点E,∴EH⊥BC,∴EH⊥AD.∴根据垂径定理,得AH=DH.∵AB=8,AD=12,∴AH=6,HE=8.设☉O的半径为r,则AO=r,OH=8-r.在Rt△OA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论