版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川成都实验中学数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,则的结果为()A. B.C. D.2.,,且(3)(λ),则λ等于()A. B.-C.± D.13.函数的图象如图所示,为了得到函数的图象,可以把函数的图象A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)4.下列函数是偶函数的是A. B.C. D.5.已知集合,下列结论成立是()A. B.C. D.6.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则7.下列函数中,是幂函数的是()A. B.C. D.8.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.9.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=010.已知函数,则下列关于函数的说法中,正确的是()A.将图象向左平移个单位可得到的图象B.将图象向右平移个单位,所得图象关于对称C.是函数的一条对称轴D.最小正周期为二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在上单调递增,则a的取值范围为______12.函数的最小值为______.13.函数的值域是__________.14.设a>0且a≠1,函数fx15.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.16.若,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点(Ⅰ)求证:面;(Ⅱ)求点到面的距离18.已知直线l1过点A(1,0),B(3,a-1),直线l2过点M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值19.如图,在平面直角坐标系xOy中,点A为单位圆与x轴正半轴的交点,点P为单位圆上的一点,且,点P沿单位圆按逆时针方向旋转角后到达点.(1)求阴影部分的面积;(2)当时,求的值.20.已知集合,.(1)当时,求.(2)若,求实数m的取值范围.21.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据交集的定义计算可得;【详解】解:因为,,所以故选:D2、A【解析】利用向量垂直的充要条件列出方程,利用向量的运算律展开并代值,即可求出λ【详解】∵,∴=0,∵(3)⊥(λ),∴(3)•(λ)=0,即3λ2+(2λ﹣3)﹣22=0,∴12λ﹣18=0,解得λ=故选A3、C【解析】根据函数的图象,设可得再根据五点法作图可得故可以把函数的图象先向左平移个单位,得到的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到函数的图象,故选C4、C【解析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.5、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C6、D【解析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D7、B【解析】根据幂函数的定义辨析即可【详解】根据幂函数的形式可判断B正确,A为一次函数,C为指数函数,D为对数函数故选:B8、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C9、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.10、C【解析】根据余弦型函数的图象变换性质,结合余弦型函数的对称性和周期性逐一判断即可.【详解】A:图象向左平移个单位可得到函数的解析式为:,故本选项说法不正确;B:图象向右平移个单位,所得函数的解析式为;,因为,所以该函数是偶函数,图象不关于原点对称,故本选项说法不正确;C:因为,所以是函数的一条对称轴,因此本选项说法正确;D:函数的最小正周期为:,所以本选项说法不正确,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数的单调性得到,计算得到答案.【详解】函数在上单调递增,则故答案为:【点睛】本题考查了函数的单调性,意在考查学生的计算能力.12、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.13、【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:14、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).15、##【解析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:16、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ)【解析】(1)取中点,连结,,∵,分别为,的中点,∴可证得,,∴四边形是平行四边形,∴,又∵平面,平面,∴面(2)∵,∴18、(1);(2).【解析】由两点式求出l1的斜率(1)再由两点求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率为0和不为0讨论,当l1的斜率为0时,由M,N的横坐标相等求a得值;不为0时由两直线的斜率乘积等于-1得答案【详解】(1),即,解得(2),即,解得.【点睛】本题考查了直线的一般式方程与两直线平行、垂直的关系,考查了分类讨论的数学思想方法,是基础题19、(1)(2)【解析】(1)由三角函数定义求出点坐标,用扇形面积减三角形面积可得弓形面积;(2)由三角函数定义写出点坐标,计算后用二倍角公式和诱导公式计算【详解】(1)由三角函数定义可知,点P的坐标为.所以面积为,扇形OPA的面积为.所以阴影部分的面积为.(2)由三角函数的定义,可得.当时,,即,所以.【点睛】本题考查三角函数的定义,正弦的二倍角公式和诱导公式,属于基础题.20、(1)(2)【解析】(1)利用集合的交集运算即可求解;(2)由集合的基本运算得出集合的包含关系,进而求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老年人保健按摩服务制度
- 办公室员工离职交接制度
- 网络安全保障严格承诺书范文4篇
- 海边的日落美景写景作文14篇范文
- 职业目标达成个人承诺书范文6篇
- 如何规范养生药膳制度
- 医院接待工作制度规范
- 艺术展览规范化管理制度
- 自行车棚管理制度及规范
- 音乐室进区制度规范标准
- 2026年中国航空传媒有限责任公司市场化人才招聘备考题库有答案详解
- 2026年《全科》住院医师规范化培训结业理论考试题库及答案
- 2026北京大兴初二上学期期末语文试卷和答案
- 重力式挡土墙施工安全措施
- 葫芦岛事业单位笔试真题2025年附答案
- 新人教部编版一年级下册生字表全册描红字帖可打印
- 中国的“爱经”(一)-《天地阴阳交⊥欢大乐赋》
- 广元市利州区何家坪石材厂饰面用灰岩矿矿山地质环境保护与土地复垦方案
- 保健按摩师初级试题
- 2021年度四川省专业技术人员继续教育公需科目(答案整合)
- 医疗废物处理方案
评论
0/150
提交评论