北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题含解析_第1页
北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题含解析_第2页
北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题含解析_第3页
北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题含解析_第4页
北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京师范大学蚌埠附属学校2026届高二数学第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.2.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.3.已知等差数列的公差,若,,则该数列的前项和的最大值为()A.30 B.35C.40 D.454.双曲线的渐近线方程为()A. B.C. D.5.已知函数,若对任意两个不等的正数,,都有恒成立,则a的取值范围为()A. B.C. D.6.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.7.若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A. B.C. D.8.青少年视力被社会普遍关注,为了解他们的视力状况,经统计得到图中右下角名青少年的视力测量值(五分记录法)的茎叶图,其中茎表示个位数,叶表示十分位数.如果执行如图所示的算法程序,那么输出的结果是()A. B.C. D.9.已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3 B.C. D.10.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.11.已知函数,则()A. B.C. D.12.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.12二、填空题:本题共4小题,每小题5分,共20分。13.已知球的表面积为,则该球的体积为______.14.抛物线的准线方程是________15.在某次海军演习中,已知甲驱逐舰在航母的南偏东15°方向且与航母的距离为12海里,乙护卫舰在甲驱逐舰的正西方向,若测得乙护卫舰在航母的南偏西45°方向,则甲驱逐舰与乙护卫舰的距离为___________海里.16.已知数列前项和为,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知椭圆E:(a>b>0)的左、右焦点分别为F1,F2,离心率为.点P是椭圆上的一动点,且P在第一象限.记的面积为S,当时,.(1)求椭圆E的标准方程;(2)如图,PF1,PF2的延长线分别交椭圆于点M,N,记和的面积分别为S1和S2.(i)求证:存在常数λ,使得成立;(ii)求S2-S1的最大值.18.(12分)已知圆:,定点,A是圆上的一动点,线段的垂直平分线交半径于P点(1)求P点的轨迹C的方程;(2)设直线过点且与曲线C相交于M,N两点,不经过点.证明:直线MQ的斜率与直线NQ的斜率之和为定值19.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程20.(12分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.21.(12分)已知三点共线,其中是数列中的第n项.(1)求数列的通项;(2)设,求数列的前n项和.22.(10分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.2、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.3、D【解析】利用等差数列的性质求出公差以及首项,再由等差数列的前项和公式即可求解.【详解】等差数列,由,有,又,公差,所以,,得,,,∴当或10时,最大,,故选:D4、A【解析】直接求出,,进而求出渐近线方程.【详解】中,,,所以渐近线方程为,故.故选:A5、A【解析】将已知条件转化为时恒成立,利用参数分离的方法求出a的取值范围【详解】对任意都有恒成立,则时,,当时恒成立,

,当时恒成立,,故选:A6、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.7、B【解析】根据题意得到,,解得答案.【详解】双曲线(,)的焦距为,故,.且渐近线经过点,故,故,双曲线方程为:.故选:.【点睛】本题考查了双曲线方程,意在考查学生对于双曲线基本知识的掌握情况.8、B【解析】依题意该程序框图是统计这12名青少年视力小于等于的人数,结合茎叶图判断可得;【详解】解:根据程序框图可知,该程序框图是统计这12名青少年视力小于等于的人数,由茎叶图可知视力小于等于的有5人,故选:B9、C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C10、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.11、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.12、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球半径为,由球表面积求出,然后可得球的体积【详解】设球半径为,∵球的表面积为,∴,∴,∴该球的体积为故答案为【点睛】解答本题的关键是熟记球的表面积和体积公式,解题时由条件求得球的半径后可得所求结果14、【解析】将抛物线方程化为标准形式,从而得到准线方程.【详解】抛物线方程可化为:抛物线准线方程为:故答案为【点睛】本题考查抛物线准线的求解,易错点是未将抛物线方程化为标准方程.15、【解析】利用正弦定理求得甲驱逐舰与乙护卫舰的距离.【详解】,设甲乙距离,由正弦定理得.故答案为:16、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(i)存在常数,使得成立;(ii)的最大值为.【解析】(1)求点P的坐标,再利用面积和离心率,可以求出,然后就可以得到椭圆的标准方程;(2)设点的坐标和直线方程,联立方程,解出的y坐标值与P的坐标之间的关系,求以焦距为底边的三角形面积;利用均值定理当且仅当时取等号,求最大值.【小问1详解】先求第一象限P点坐标:,所以P点的坐标为,所以,所以椭圆E的方程为【小问2详解】设,易知直线和直线的坐标均不为零,因为,所以设直线的方程为,直线的方程为,由所以,因为,,所以所以同理由所以,因为,,所以所以,因为,,(i)所以所以存在常数,使得成立.(ii),当且仅当,时取等号,所以的最大值为.18、(1);(2)证明见解析,定值为-1.【解析】(1)根据给定条件探求出,再利用椭圆定义即可得轨迹C的方程.(2)由给定条件可得直线的斜率k存在且不为0,写出直线的方程,再联立轨迹C的方程,借助韦达定理计算作答.【小问1详解】圆:的圆心,半径为8,因A是圆上一动点,线段的垂直平分线交半径于P点,则,于是得,因此,P点的轨迹C是以,为左右焦点,长轴长2a=8的椭圆,短半轴长b有,所以P点的轨迹C的方程是.【小问2详解】因直线过点且与曲线C:相交于M,N两点,则直线的斜率存在且不为0,又不经过点,即直线的斜率不等于-1,设直线的斜率为k,且,直线的方程为:,即,由消去y并整理得:,,即,则有且,设,则,直线MQ的斜率,直线NQ的斜率,,所以直线MQ的斜率与直线NQ的斜率之和为定值.19、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或20、(1)(2)(3)不存在,理由见解析【解析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.,利用向量法求解异面直线成角即可.(2)先求出平面DEF的一个法向量,然后利用向量法求解点面距离.(3)设(),由可得关于的方程,从而得出答案.【小问1详解】由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.则,,,,故,,从而,所以异面直线AE与DF所成角的大小为.小问2详解】,设平面DEF的法向量为,则,即,取,得到平面DEF的一个法向量为.点A到平面DEF的距离为.【小问3详解】假设存在满足条件的点M,设(),则,从而.即,即,此方程无实数解,故不存在满足条件的点M.21、(1)(2)【解析】(1)由三点共线可知斜率相等,即可得出答案;(2)由题可得,利用错位相减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论