北京101中学2026届高二上数学期末预测试题含解析_第1页
北京101中学2026届高二上数学期末预测试题含解析_第2页
北京101中学2026届高二上数学期末预测试题含解析_第3页
北京101中学2026届高二上数学期末预测试题含解析_第4页
北京101中学2026届高二上数学期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京101中学2026届高二上数学期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有()A.24种 B.48种C.72种 D.96种2.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.33.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.14.将一张坐标纸折叠一次,使点与重合,求折痕所在直线是()A. B.C. D.5.已知下列四个命题,其中正确的是()A. B.C. D.6.若是函数的一个极值点,则的极大值为()A. B.C. D.7.不等式的解集是()A. B.C.或 D.或8.已知直线平分圆C:,则最小值为()A.3 B.C. D.9.函数的极大值点为()A. B.C. D.不存在10.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.11.曲线的离心率为()A. B.C. D.12.函数的单调增区间为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,有且只有一个零点,则实数的取值范围是_______.14.某校老年、中年和青年教师的人数见如表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为______.类别老年教师中年教师青年教师合计人数90018001600430015.设,是双曲线的两个焦点,P是双曲线上任意一点,过作平分线的垂线,垂足为M,则点M到直线的距离的最小值是___16.如图是一个无盖的正方体盒子展开图,A,B,C,D是展开图上的四点,BD则在正方体盒子中,AD与平面ABC所成角的正弦值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的离心率为,且经过点.(1)求的方程;(2)设的右焦点为F,过F作两条互相垂直的直线AB和DE,其中A,B,D,E都在椭圆上,求的取值范围.18.(12分)已知等差数列满足:成等差数列,成等比数列.(1)求的通项公式:(2)在数列的每相邻两项与间插入个,使它们和原数列的项构成一个新数列,数列的前项和记为,求及.19.(12分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考物理的情况,随机选取了100名高一学生,将他们某次物理测试成绩(满分100分)按照,,,,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计这100名学生本次物理测试成绩的中位数.(2)根据调查,本次物理测试成绩不低于60分的学生,高考将选考物理科目;成绩低于60分的学生,高考将不选考物理科目.按分层抽样的方法从测试成绩在,的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考物理科目的概率.20.(12分)已知函数,是的一个极值点.(1)求b的值;(2)当时,求函数的最大值.21.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和22.(10分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B2、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.3、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C4、D【解析】设,,则折痕所在直线是线段AB的垂直平分线,故求出AB中点坐标,折痕与直线AB垂直,进而求出斜率,用点斜式求出折痕所在直线方程.【详解】,,所以与的中点坐标为,又,所以折痕所在直线的斜率为1,故折痕所在直线是,即.故选:D5、B【解析】根据基本初等函数的求导公式和求导法则即可求解判断.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B.6、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D7、A【解析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集【详解】,即为,故选:A8、D【解析】根据直线过圆心求得,再利用基本不等式求和的最小值即可.【详解】根据题意,直线过点,即,则,当且仅当,即时取得最小值.故选:D.9、B【解析】求导,令导数等于0,然后判断导数符号可得,或者根据对勾函数图象可解.【详解】令,得,因为时,,时,,所以时有极大值;当时,,时,,所以时有极小值.故选:B10、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.11、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.12、D【解析】先求定义域,再求导数,令解不等式,即可.【详解】函数的定义域为令,解得故选:D【点睛】本题考查利用导数研究函数的单调性,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:14、【解析】由题意,总体中青年教师与老年教师比例为;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即,解得.故答案为.考点:分层抽样.15、1【解析】构造全等三角形,结合双曲线定义,求得点的轨迹方程,再根据直线与圆的位置关系,即可求得点到直线距离的最小值.【详解】延长交的延长线于点,如下所示:因为平分,且,故△△,则,又,则,又在△中,分别为的中点,故可得;设点的坐标为,则,即点在圆心为,半径的圆上,圆心到直线的距离,故点到直线距离的最小值为.故答案为:.【点睛】本题考查双曲线的定义,以及直线与圆的位置关系,解决问题的关键在于通过几何关系求得点的轨迹方程,属中档题.16、##【解析】先复原正方体,再构造线面角后可求正弦值.【详解】复原后的正方体如图所示,设所在面的正方形的余下的一个顶点为,连接,则平面,故为AD与平面ABC所成角,而,故为AD与平面ABC所成角的正弦值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据椭圆的离心率为,及经过点建立等式可求解;(2)分斜率存在与不存在两种情况进行讨论,当斜率存在时,计算与后再求范围即可.【小问1详解】由题意知的离心率为,整理得,又因为经过点,所以,解得,所以,因此,的方程为.小问2详解】由已知可得,当直线AB或DE有一条的斜率不存在时,可得,或,,此时有或.当AB和DE的斜率都存在时且不为0时,设直线:,直线:,,,,由得,所以,,所以,用替换可得.所以,综上所述,的取值范围为.18、(1);(2),.【解析】(1)根据等差数列和等比数列的通项公式进行求解即可;(2)根据等差数列的通项公式,结合等比数列的前项和公式进行求解即可.【小问1详解】设等差数列的公差为,因为成等差数列,所以有,因成等比数列,所以,所以;【小问2详解】由题意可知:在和之间插入个,在和之间插入个,,在和之间插入个,此时共插入的个数为:,在和之间插入个,此时共插入的个数为:,因此.19、(1),中位数为;(2).【解析】(1)由频率和为1求参数a,根据直方图及中位数性质求中位数即可.(2)首先由分层抽样原则求选取的5人在、的人数分布情况,再应用列举法求古典概型的概率即可.【小问1详解】由图知:,解得.学生成绩在的频率为;学生成绩在的频率为.设这100名学生本次物理测试成绩的中位数为,则,解得,故估计这100名学生本次物理测试成绩的中位数为.【小问2详解】由(1)知,学生成绩在的频数为,学生成绩在的频数为.按分层抽样的方法从中选取5人,则成绩在的学生被抽取人,分别记为,,成绩在的学生被抽取人,分别记为,,.从中任意选取2人,有,,,,,,,,,这10种选法,其中至少有1人高考选考物理科目的选法有,,,,,,,,这9种,∴这2人中至少有1人高考选考物理科目的概率.20、(1);(2)【解析】(1)先求出导函数,再根据x=2是的一个极值点对应x=2是导数为0的根即可求b的值;(2)根据(1)的结论求出函数的极值点,通过比较极值与端点值的大小从而确定出最大值.【小问1详解】由题设,.∵x=2是的一个极值点,∴x=2是的一个根,代入解得:.经检验,满足题意.【小问2详解】由(1)知:,则.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+递减递增∵当x∈(1,2)时,即在(1,2)上单调递减;当x∈(2,3)时,即在(2,3)上单调递增.∴当x∈[1,3]时,函数的最大值为与中的较大者.∴函数的最大值为.21、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:22、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论