版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青州第二中学2026届数学高二上期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线实轴长为()A.1 B.C.2 D.2.圆心在x轴上且过点的圆与y轴相切,则该圆的方程是()A. B.C. D.3.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.20224.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件5.2021年是中国共产党百年华诞,3月24日,中宣部发布中国共产党成立100周年庆祝活动标识(图1),标识由党徽、数字“100”“1921”“2021”和56根光芒线组成,生动展现中国共产党团结带领中国人民不忘初心、牢记使命、艰苦奋斗的百年光辉历程.其中“100”的两个“0”设计为两个半径为的相交大圆,分别内含一个半径为1的同心小圆,且同心小圆均与另一个大圆外切(图2).已知,在两大圆的区域内随机取一点,则该点取自两大圆公共部分的概率为()A. B.C. D.6.圆的圆心和半径分别是()A. B.C. D.7.若向量,,,则()A. B.C. D.8.若直线与直线垂直,则()A.6 B.4C. D.9.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.10.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.11.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得12.设函数,则曲线在点处的切线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.关于曲线,则以下结论正确的个数有______个①曲线C关于原点对称;②曲线C中,;③曲线C是不封闭图形,且它与圆无公共点;④曲线C与曲线有4个交点,这4点构成正方形14.如图,在棱长为2的正方体中,E为BC的中点,点P在线段上,分别记四棱锥,的体积为,,则的最小值为______15.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.已知抛物线,经过点一束平行于C对称轴的光线,经C上点P反射后交C于点Q,则PQ的长度为______.16.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)若函数有且仅有2个零点,求实数的值.18.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:19.(12分)已知函数,求(1)(2)(3)曲线在处的切线方程20.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列通项公式;(2)若,求数列的前项和.21.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.22.(10分)如图,在四棱锥中,平面,底面为矩形,,,为的中点,.请用空间向量知识解答下列问题:(1)求线段的长;(2)若为线段上一点,且,求平面与平面夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由双曲线的标准方程可求出,即可求双曲线的实轴长.【详解】由可得:,,即,实轴长,故选:B2、A【解析】根据题意设出圆的方程,列式即可求出【详解】依题可设圆的方程为,所以,解得即圆的方程是故选:A3、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.4、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.5、B【解析】求出两圆相交公共部分两个弓形面积,结合两圆面积可得概率【详解】如图,是两圆心,是两圆交点坐标,四边形边长均为,又,所以,所以,四边形是正方形,,弓形面积为,两个弓形面积为,两圆涉及部分面积为所以所求概率为故选:B6、B【解析】将圆的方程化成标准方程,即可求解.【详解】解:.故选:B.7、A【解析】根据向量垂直得到方程,求出的值.【详解】由题意得:,解得:.故选:A8、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.9、B【解析】根据空间向量基本定理求解【详解】由已知故选:B10、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.11、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.12、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据曲线的方程,以及曲线的对称性、范围,结合每个选项进行逐一分析,即可判断.【详解】①将方程中的分别换为,方程不变,故该曲线关于原点对称,故正确;②因为,解得或,故,同理可得:,故错误;③根据②可知,该曲线不是封闭图形;联立与,可得:,将其视作关于的一元二次方程,故,所以方程无根,故曲线与没有交点;综上所述,③正确;④假设曲线C与曲线有4个交点且交点构成正方形,根据对称性,第一象限的交点必在上,联立与可得:,故交点为,而此点坐标不满足,所以这样的正方形不存在,故错误;综上所述,正确的是①③.故答案为:.【点睛】本题考察曲线与方程中利用曲线方程研究曲线性质,处理问题的关键是把握由曲线方程如何研究对称性以及范围问题,属困难题.14、【解析】设,用参数表示目标函数,利用均值不等式求最值即可.【详解】取线段AD中点为F,连接EF、D1F,过P点引于M,于N,则平面,平面,则,∴,设,则,,即,,∴,当且仅当时,等号成立,故答案为:15、####【解析】根据题意,求得点以及抛物线焦点的坐标,即可求得所在直线方程,联立其与抛物线方程,求得点的坐标,即可求得.【详解】因为经过点一束平行于C对称轴的光线交抛物线于点,故对,令,则可得,也即的坐标为,又抛物线的焦点的坐标为,故可得直线方程为,联立抛物线方程可得:,,解得或,将代入,可得,即的坐标为,则.故答案为:.16、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数的单调递减区间为,单调递增区间为,(2)【解析】(1)利用导数求得的单调区间.(2)利用导数研究的单调性、极值,从而求得的值.【小问1详解】由,得,令,得或;令,得.∴函数的单调递减区间为,单调递增区间为,.【小问2详解】∵,∴.当时,;当时,∴的单调递减区间为,;单调递增区间为.∴的极小值为,极大值为.当时,;当时,.又∵函数有且仅有2个零点,∴实数的值为.18、(1)更适合(2)(3)点P处会受到噪声污染,理由见解析【解析】(1)直接判断即可;(2)令,先算线性回归方程再算非线性回归方程;(3)利用基本不等式计算出的最小值,再与60比较即可.【小问1详解】更适合【小问2详解】令,则,,D关于W的回归方程是,则D关于I的回归方程是【小问3详解】设点P处的声音能量为,则因为所以当且仅当,即时等号成立所以,所以点P处会受到噪声污染19、(1)(2)(3)y=【解析】(1)由导数的运算法则求解即可;(2)利用导函数计算即可;(3)由导数的几何意义得出切线方程.【小问1详解】【小问2详解】【小问3详解】当时,f(x)=0,则切点为所以切线方程是,即y=20、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.【小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.21、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学中药学(中药制剂工艺)试题及答案
- 2025年中职(蜂产品加工与营销)蜂蜜加工技术阶段测试试题及答案
- 2025年大学汽车服务工程(汽车售后服务管理)试题及答案
- 2025年大学环境科学(环境营养研究)试题及答案
- 巴西介绍英语
- 中国银行新员工培训课件
- 养老院老人紧急救援人员培训制度
- 养老院老人活动参与制度
- 养老院老人医疗护理服务制度
- 养老院消防安全管理制度
- 上海市徐汇区2026届初三一模英语试题(含答案)
- 2026年酒店服务员考试题及答案
- 普速铁路行车技术管理课件 项目二 行车组织基础
- 《(2025年)中国类风湿关节炎诊疗指南》解读课件
- 炎德·英才·名校联考联合体2026届高三年级1月联考语文试卷(含答及解析)
- 麦当劳行业背景分析报告
- 中国心理行业分析报告
- 2025至2030中国生物芯片(微阵列和和微流控)行业运营态势与投资前景调查研究报告
- 结核性支气管狭窄的诊治及护理
- 2025年铁岭卫生职业学院单招职业适应性考试模拟测试卷附答案
- 急腹症的识别与护理
评论
0/150
提交评论