版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省各地高二上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是等差数列的前项和,,则()A.13 B.39C.45 D.212.已知,,若,则()A.6 B.11C.12 D.223.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值4.若点在椭圆上,则该椭圆的离心率为()A. B.C. D.5.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.6.下列说法正确的个数有()(ⅰ)命题“若,则”的否命题为:“若,则”;(ⅱ)“,”的否定为“,使得”;(ⅲ)命题“若,则有实根”为真命题;(ⅳ)命题“若,则”的否命题为真命题;A.1个 B.2个C.3个 D.4个7.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角8.下列四个命题中,为真命题的是()A.若a>b,则ac2>bc2B.若a>b,c>d,则a﹣c>b﹣dC.若a>|b|,则a2>b2D.若a>b,则9.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.2110.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除11.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.12.等比数列的公比为,则“”是“对于任意正整数n,都有”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的右顶点为P,右焦点F与抛物线的焦点重合,的顶点与的中心O重合.若与相交于点A,B,且四边形为菱形,则的离心率为___________.14.已知分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有________对15.已知方程的两根为和5,则不等式的解集是______16.若,满足约束条件,则的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图长方体中,,,点为的中点.(1)求证:平面;(2)求证:平面;(3)求二面角的余弦值.18.(12分)如图,在直三棱柱中,,分别是棱的中点,点在线段上.(1)当直线与平面所成角最大时,求线段的长度;(2)是否存在这样的点,使平面与平面所成的二面角的余弦值为,若存在,试确定点的位置,若不存在,说明理由.19.(12分)为了解某城中村居民收入情况,小明利用周末时间对该地在岗居民月收入进行了抽样调查,并将调查数据整理得到如下频率分布直方图:根据直方图估算:(1)在该地随机调查一位在岗居民,该居民收入在区间内的概率;(2)该地区在岗居民月收入的平均数和中位数;20.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积21.(12分)如图,底面是矩形的直棱柱中,;(1)求证:平面;(2)求直线与平面所成角的大小;22.(10分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据等差数列的通项公式求出,然后根据等差数列的求和公式及等差数列的下标性质求得答案.【详解】设等差数列的公差为d,则,则.故选:B.2、C【解析】根据递推关系式计算即可求出结果.【详解】因为,,,则,,,故选:C.3、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B4、C【解析】根据给定条件求出即可计算椭圆的离心率.【详解】因点在椭圆,则,解得,而椭圆长半轴长,所以椭圆离心率.故选:C5、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.6、B【解析】根据四种命题的结构特征可判断(ⅰ)(ⅳ)的正误,根据全称命题的否定形式可判断(ⅱ)的正误,根据判别式的正误可判断(ⅲ)的正误.【详解】命题“若,则”的否命题”为“若,则”,故(ⅰ)错误.“,”的否定为“,使得”,故(ⅱ)正确,当时,,故有实根,故(ⅲ)正确,“若,则”的否命题为“若,则”,取,则,故命题若,则为假命题,故(ⅳ)错误.故选:B7、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C8、C【解析】利用不等式的性质结合特殊值法依次判断即可【详解】当c=0时,A不成立;2>1,3>-1,而2-3<1-(-1),故B不成立;a=2,b=1时,,D不成立;由a>|b|知a>0,所以a2>b2,C正确故选:C9、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D10、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法11、A【解析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【点睛】本题考查了抛物线的简单几何性质,属于基础题12、D【解析】结合等比数列的单调性,根据充分必要条件的定义判断【详解】若,,则,,充分性不成立;反过来,若,,则时,必要性不成立;因此“”是“对于任意正整数n,都有”的既不充分也不必要条件.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设抛物线的方程为得到,把代入椭圆的方程化简即得解.【详解】设抛物线的方程为.由题得,代入椭圆的方程得,所以,所以,所以因为,所以.故答案为:【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(根据已知求出代入离心率的公式即得解);(2)方程法(直接由已知得到关于离心率的方程解方程即得解).要根据已知条件灵活选择方法求解.14、0【解析】计算每两个向量的数量积,判断该两个向量是否垂直,可得答案.【详解】因为,,.所以中任意两个向量都不垂直,即α,β,γ中任意两个平面都不垂直故答案为:0.15、【解析】根据根与系数的关系以及一元二次不等式的解法即可解出【详解】由题意可知,,解得,所以即为,解得或,所以不等式的解集是故答案为:16、【解析】作出线性约束条件的可行域,再利用截距的几何意义求最小值;【详解】约束条件的可行域,如图所示:目标函数在点取得最小值,即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】(1)作辅助线,由中位线定理证明,再由线面平行的判定定理证明即可;(2)连接,由勾股定理证明,,再结合线面垂直的判定定理证明即可;(3)建立空间直角坐标系,利用向量法求面面角的余弦值即可.【详解】(1)连接交与点,连接四边形为正方形,点为的中点又点为的中点,平面,平面平面(2)连接由勾股定理可知,,则同理可证,平面平面(3)建立如下图所示的空间直角坐标系显然平面的法向量即为平面的法向量,不妨设为由(2)可知平面,即平面的法向量为又二面角是钝角二面角的余弦值为【点睛】关键点睛:在第一问中,关键是利用中位线定理找到线线平行,再由定义证明线面平行;在第二问中,关键是利用勾股定理证明线线垂直,从而得出线面垂直;在第三问中,关键是建立坐标系,利用向量法求面面角的余弦值.18、(1)(2)存在,A1P=【解析】(1)作出线面角,因为对边为定值,所以邻边最小时线面角最大;(2)建立空间直角坐标系,由向量法求二面角列方程可得.【小问1详解】直线PN与平面A1B1C1所成的角即为直线PN与平面ABC所成角,过P作,即PN与面ABC所成的角,因为PH为定值,所以当NH最小时线面角最大,因为当P为中点时,,此时NH最小,即PN与平面ABC所成角最大,此时.【小问2详解】以AB,AC,AA1为x,y,z轴建立空间坐标系,则:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)设=,,,设平面PMN的法向量为,则,即,解得,平面AC1C的法向量为,.所以P点为A1B1的四等分点,且A1P=.19、(1)(2)平均数为;中位数为.【解析】(1)直接根据概率和为1计算得到答案.(2)根据平均数和中位数的定义直接计算得到答案.【小问1详解】该居民收入在区间内的概率为:【小问2详解】居民月收入的平均数为:.第一组概率为,第二组概率为,第三组概率为,设居民月收入的中位数为,则,解得.20、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】因为△ABC和△PBC为正三角形,且,所以,又,所以正三角形的面积为,所以.21、(1)证明见解析(2)【解析】(1)通过证明和可得答案;(2)连接,则为直线与平面所成角的平面角,在直角三角形中计算即可.【小问1详解】棱柱为直棱柱,面,又面,又直棱柱的底面是矩形,,又,平面,平面,平面;【小问2详解】连接,面,则为直线与平面所成角的平面角在直角三角形中,则,,所以直线与平面所成角的大小为.22、(1)证明见解析(2)【解析】(1)根据题意证明,,然后根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学校园宿舍制度规范
- 中国儿童军官制度规范
- 自控阀管理制度规范标准
- 证书保管及使用制度规范
- 外来司机卫生制度规范
- 医疗机构医嘱制度规范
- 食盐安全管理员制度规范
- 语言文字规范化整改制度
- 配电箱每日点检制度规范
- 前台服务排班制度规范
- 安徽省合肥市蜀山区2024-2025学年七年级(上)期末数学试卷(无答案)
- 第六单元课外古诗词诵读《南安军》说课稿 2023-2024学年统编版语文九年级下册
- 食堂2023年工作总结及2024年工作计划(汇报课件)
- 机器学习课件周志华Chap08集成学习
- 殡仪馆鲜花采购投标方案
- T-GDWCA 0035-2018 HDMI 连接线标准规范
- 面板堆石坝面板滑模结构设计
- 无人机装调检修工培训计划及大纲
- GB/T 3683-2023橡胶软管及软管组合件油基或水基流体适用的钢丝编织增强液压型规范
- 春よ、来い(春天来了)高木绫子演奏长笛曲谱钢琴伴奏
- ARJ21机型理论知识考试题库(汇总版)
评论
0/150
提交评论