版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津滨海新区大港第八中学2026届数学高二上期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.2.椭圆C:的焦点在x轴上,其离心率为则椭圆C的长轴长为()A.2 B.C.4 D.83.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.4.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等5.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.6.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.7.已知等差数列,且,则()A.3 B.5C.7 D.98.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.9.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件10.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.11.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定12.已知双曲线的方程为,则下列关于双曲线说法正确的是()A.虚轴长为4 B.焦距为C.焦点到渐近线的距离为4 D.渐近线方程为二、填空题:本题共4小题,每小题5分,共20分。13.已知,求_____________.14.已知抛物线C的方程为:,F为抛物线C的焦点,倾斜角为的直线过点F交抛物线C于A、B两点,则线段AB的长为________15.双曲线的渐近线方程是____________16.向量,,若,且,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.18.(12分)在平面直角坐标系中,椭圆的离心率为,且点在椭圆C上(1)求椭圆C的标准方程;(2)过点的直线与椭圆C交于A,B两点,试探究直线上是否存在定点Q,使得为定值.若存在,求出定点Q的坐标及实数的值;若不存在,请说明理由19.(12分)已知等差数列的前项和满足,.(1)求的通项公式;(2)求数列的前项和.20.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.21.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.22.(10分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.2、C【解析】根据椭圆的离心率,即可求出,进而求出长轴长.【详解】由椭圆的性质可知,椭圆的离心率为,则,即所以椭圆C的长轴长为故选:C.【点睛】本题主要考查了椭圆的几何性质,属于基础题.3、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.4、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.5、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B6、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集7、B【解析】根据等差数列的性质求得正确答案.【详解】由于数列是等差数列,所以.故选:B8、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.9、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.10、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题11、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.12、D【解析】根据双曲线的性质逐一判断即可.【详解】在双曲线中,焦点在轴上,,,,所以虚轴长为6,故A错误;焦距为,故B错误;渐近线方程为,故D正确;焦点到渐近线的距离为,故C错误;故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.14、8【解析】根据给定条件求出抛物线C的焦点坐标,准线方程,再求出点A,B的横坐标和即可计算作答.【详解】抛物线C:焦点,准线方程为,依题意,直线l的方程为:,由消去x并整理得:,设,则,于是得,所以线段AB的长为8.故答案为:815、【解析】由双曲线的方程可知,,即可直接写出其渐近线的方程.【详解】由双曲线的方程为,可知,;则双曲线的渐近线方程为.故答案:.16、【解析】根据可求出,再根据向量垂直即可求出,即可得出答案.【详解】因为,,所以,解得,又因为,所以,解得,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.【小问2详解】由题意可知,直线的斜率不为0,故设直线的方程为,.联立,得,恒成立,由韦达定理,得,,假设存在一点,满足题意,则直线的斜率与直线的斜率满足,即,所以,所以解得,所以存在一点,满足,点的坐标为.18、(1)(2)存在,定点的坐标为,实数的值为【解析】(1)由题意可得,再结合,可求出,从而可求得椭圆方程,(2)设在直线上存在定点,当直线斜率存在时,设过点P的动直线l为,设,,将直线方程代入椭圆方程消去,利用根与系数,再计算为常数可求出,从而可求得,当直线斜率不存在时,可求出两点的坐标,从而可求得的值【小问1详解】由题意知结合,可得,所以椭圆C的标准方程为,【小问2详解】设在直线上存在定点,使为定值,①当直线斜率存在时,设过点P的动直线l为,设,·由得,则,,所以为常数则,解之得,即定点为,则②当直线斜率不存在时,即动直线方程为,不妨设,,此时也成立所以,存在定点使为定值,即19、(1);(2).【解析】(1)由,,可得求出,从而可得的通项公式;(2)由(1)可得,从而可得,然后利用裂项相消求和法可求得【详解】解:(1)设等差数列的公差为,因为,.所以,化简得,解得,所以,(2)由(1)可知,所以,所以【点睛】此题考查等差数列前项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题20、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为,设,,直线AP的方程为,即.联立方程组消去y得.∵P,A为直线AP与椭圆C的交点,∴,即.把换成,得.∴,解得,当时,直线BP的方程为,经验证与椭圆C相切,不符合题意;当时,直线BP的方程为,符合题意.∴直线AP得方程为.【点睛】关键点点睛:两条直线关于直线对称,两直线的倾斜角互补,斜率互为相反数.21、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.22、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准线方程为x=-2【小问2详解】当直线l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年闽侯县昙石山中学第一期临聘教师招聘备考题库及参考答案详解1套
- 2025年中职历史学(中国古代史纲要)试题及答案
- 2025年中职智慧健康养老服务(养老常识基础)试题及答案
- 2026年仓储管理(货物防护)试题及答案
- 2025年大学第二学年(精密仪器制造)技术应用阶段测试题及答案
- 2025年高职(电子信息工程技术)单片机原理及应用专项测试试题及答案
- 2025年大学生态工程(生态工程)试题及答案
- 2025年中职(会计电算化)电子报税综合技能测试试题及答案
- 2025年中职(会计信息化)财务软件操作试题及答案
- 2025年大学农业机械化及其自动化(农机智能化技术)试题及答案
- 2026届潍坊市重点中学高一化学第一学期期末教学质量检测试题含解析
- 超皮秒祛斑课件
- 2025年高尔基《童年》阅读测试+答案
- 跟单转正述职报告
- 移民管理警察职业精神
- 棋牌室消防安全应急预案
- 罐体环形喷淋施工方案
- 2025年江苏(统招专升本)高等数学考试试题及答案
- 保安公司安全培训教材课件
- 通信涉电作业安全培训课件
- 口腔医护管理办法
评论
0/150
提交评论