2026届山东省新泰中学数学高二上期末质量检测试题含解析_第1页
2026届山东省新泰中学数学高二上期末质量检测试题含解析_第2页
2026届山东省新泰中学数学高二上期末质量检测试题含解析_第3页
2026届山东省新泰中学数学高二上期末质量检测试题含解析_第4页
2026届山东省新泰中学数学高二上期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省新泰中学数学高二上期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.2.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1773.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.134.已知数列的通项公式为.若数列的前n项和为,则取得最大值时n的值为()A.2 B.3C.4 D.55.已知平面向量,且,向量满足,则的最小值为()A. B.C. D.6.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.7.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.8.函数的图象大致是()A. B.C. D.9.用反证法证明命题“a,b∈N,如果ab可以被5整除,那么a,b至少有1个能被5整除.”假设内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1个不能被5整除10.已知是函数的导函数,则()A. B.C. D.11.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球12.命题“,”的否定形式是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有三个零点,则实数的取值范围为___________.14.已知定点,点在直线上运动,则,两点的最短距离为________15.长方体中,,,已知点H,A,三点共线,且,则点H到平面ABCD的距离为______16.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)共享电动车(sharedev)是一种新的交通工具,通过扫码开锁,实现循环共享.某记者来到中国传媒大学探访,在校园喷泉旁停放了10辆共享电动车,这些电动车分为荧光绿和橙色两种颜色,已知从这些共享电动车中任取1辆,取到的是橙色的概率为,若从这些共享电动车中任意抽取3辆.(1)求取出的3辆共享电动车中恰好有一辆是橙色的概率;(2)求取出的3辆共享电动车中橙色的电动车的辆数X的分布列与数学期望.18.(12分)已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围19.(12分)在四棱锥中,底面ABCD是矩形,点E是线段PA的中点.(1)求证:平面EBD;(2)若是等边三角形,,平面平面ABCD,求点E到平面PDB的距离.20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.21.(12分)在三角形ABC中,三个顶点的坐标分别为,,,且D为AC的中点.(1)求三角形ABC的外接圆M方程;(2)求直线BD与外接圆M相交产生的相交弦的长度.22.(10分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.3、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.4、C【解析】根据单调性分析出数列的正数项有哪些即可求解.【详解】由条件有,当时,,即;当时,,即.即,所以取得最大值时n的值为.故选:C5、B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一点时,使最小,又,∴当且仅当三点共线且时,最小为.故选:B.【点睛】关键点点睛:由已知确定,,构成等边三角形,即可将问题转化为圆上动点到射线的距离最短问题.6、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A7、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.8、A【解析】根据函数的定义域及零点的情况即可得到答案.【详解】函数的定义域为,则排除选项、,当时,,则在上单调递减,且,,由零点存在定理可知在上存在一个零点,则排除,故选:.9、B【解析】由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”考点:反证法10、B【解析】求出,代值计算可得的值.【详解】因为,则,因此,.故选:B.11、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C12、A【解析】特称命题的否定是全称命题【详解】的否定形式是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14、【解析】线段最短,就是说的距离最小,此时直线和直线垂直,可先求的斜率,再求直线的方程,然后与直线联立求交点即可【详解】定点,点在直线上运动,当线段最短时,就是直线和直线垂直,的方程为:,它与联立解得,所以的坐标是,所以,故答案为:15、【解析】在长方体中,以点A为原点建立空间直角坐标系,利用已知条件求出点H的坐标作答.【详解】在长方体中,以点A为原点建立如图所示的空间直角坐标系,则,,因点H,A,三点共线,令,点,则,又,则,解得,所以点到平面ABCD的距离为.故答案为:16、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)分布列见解析,数学期望为.【解析】(1)先求出两种颜色的电动车各有多少辆,然后根据超几何分布求概率的方法即可求得答案;(2)先确定X的所有可能取值,进而求出概率并列出分布列,然后根据期望公式求出答案.【小问1详解】因为从10辆共享电动车中任取一辆,取到橙色的概率为0.4,所以橙色的电动车有4辆,荧光绿的电动车有6辆.记A为“从中任取3辆共享单车中恰好有一辆是橙色”,则.【小问2详解】随机变量X的所有可能取值为0,1,2,3.所以,,,.所以分布列为0123数学期望.18、(1)4x﹣y+2=0(2)答案见解析(3)(0,2)∪(2,+∞)【解析】(1)求出f(x)的导数,可得切线的斜率和切点坐标,由直线的点斜式方程可得所求切线的方程;(2)求得f(x)的导数,分a、0<a两种情况讨论求出答案即可;(3)由题意可得存在x∈(0,+∞),使得不等式成立,令,x>0,求得其最小值,再把最小值看成关于的函数,结合其单调性和极值可得答案【小问1详解】函数f(x)的定义域为(0,+∞),当a=2时,,导数为4,可得f(x)在x=1处的切线的斜率为4,又f(1)=6,所以f(x)在x=1处的切线的方程为y﹣6=4(x﹣1),即4x﹣y+2=0;【小问2详解】f(x)的导数为f′(x)a2,x>0,令f′(x)=0,可得x(舍去),①当010,即a时,当0<x时,f′(x)<0,f(x)递减;当x<10时,f′(x)>0,f(x)递增所以f(x)在(0,)上递减,在(,10)上递增,f(x)在x处取得极小值,无极大值;②当10即0<a时,f′(x)<0,f(x)在(0,10)上递减,无极值综上可得,当a时,f(x)在(0,)单调递减,在(,10)上单调递增,f(x)在x时取得极小值,无极大值当0<a时,f(x)在区间(0,10)上递减,无极值;【小问3详解】存在x∈(0,+∞),使得不等式f(x)<2+a2x成立等价为存在x∈(0,+∞),使得不等式alnx﹣2<0成立令,x>0,g′(x),因为a>0,可得当0<x时,g′(x)<0,g(x)递减;当x时,g′(x)>0,g(x)递增,所以当x时,g(x)取得极小值,且为最小值,由题意可得,令,,令h′(x)=0,可得x=2,当x∈(0,2)时,h′(x)>0,h(x)递增;当x∈(2,+∞)时,h′(x)<0,h(x)递减所以当x=2时,h(x)取得极大值,且为最大值h(2)=0所以满足的实数a的取值范围是(0,2)∪(2,+∞)19、(1)见解析(2)【解析】(1)连接交于点,连接,由中位线定理结合线面平行的判定证明即可;(2)由得出点到平面的距离,再由是的中点,得出点到平面的距离.【小问1详解】连接交于点,连接.因为分别是的中点,所以.又平面EBD,平面EBD,所以平面EBD;【小问2详解】过点作的垂线,垂足为,连接.因为平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论