2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题含解析_第1页
2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题含解析_第2页
2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题含解析_第3页
2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题含解析_第4页
2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省连云港市灌南华侨高级中学数学高二上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在单调递减的等比数列中,若,,则()A.9 B.3C. D.2.已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162 B.163C.164 D.1653.函数y=的最大值为Ae-1 B.eC.e2 D.4.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.5.执行如图所示的程序框图,则输出的结果为()A. B.C. D.6.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.7.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.8.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b29.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.10.已知直四棱柱的棱长均为,则直线与侧面所成角的正切值为()A. B.C. D.11.等差数列的通项公式,数列,其前项和为,则等于()A. B.C. D.12.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的最小值为___________14.曲线在点处的切线与坐标轴围成的三角形面积为__________.15.已知抛物线与直线交于D,E两点,若(点O为坐标原点)的面积为16,则抛物线的方程为______;过焦点F的直线l与抛物线交于A,B两点,则______16.已知椭圆,A,B是椭圆C上的两个不同的点,设,若,则直线AB的方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.18.(12分)已知椭圆:()的焦点坐标为,长轴长是短轴长的2倍(1)求椭圆的方程;(2)已知直线不过点且与椭圆交于两点,从下面①②中选取一个作为条件,证明另一个成立.①直线的斜率分别为,则;②直线过定点.19.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分20.(12分)已知:,,:,,且为真命题,求实数的取值范围.21.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围22.(10分)已知数列是递增的等差数列,,若成等比数列.(1)求数列的通项公式;(2)若,数列的前项和,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.2、C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C3、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟4、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A5、B【解析】写出每次循环的结果,即可得到答案.【详解】当时,,,,;,此时,退出循环,输出的的为.故选:B【点睛】本题考查程序框图的应用,此类题要注意何时循环结束,建议数据不大时采用写出来的办法,是一道容易题.6、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.7、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.8、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.9、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.10、D【解析】根据题意把直线与侧面所成角的正切值转化为在直角三角形中的正切值,即可求出答案.【详解】由题意可知直四棱柱如下图所示:取的中点设为点,连接,在直四棱柱中,面,面,,在四边形中,,,故且.面,面,面,.故直线与侧面所成角的正切值为.故选:D.11、D【解析】根据裂项求和法求得,再计算即可.【详解】解:由题意得====所以.故选:D12、B【解析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】根据,,且,由,利用基本不等式求解.【详解】因为,,且,所以,当且仅当,即时,等号成立,所以的最小值为25,故答案为:2514、【解析】运用导数的几何意义进行求解即可.【详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:15、①.②.1【解析】利用的面积列方程,化简求得的值,从而求得抛物线方程.将的斜率分成存在和不存在两种情况进行分类讨论,结合根与系数关系求得.【详解】依题意可知,,所以,解得.所以抛物线方程为.焦点,当直线的斜率不存在时,直线的方程为,,即,此时.当直线的斜率存在且不为时,设直线的方程为,由消去并化简得,,设,则,结合抛物线的定义可知.故答案为:;16、【解析】由已知可得为的中点,再由点差法求所在直线的斜率,即可求得直线的方程【详解】由,可得为的中点,且在椭圆内,设,,,,则,,,则,即所在直线的斜率为直线的方程为,即故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.18、(1)(2)证明见解析【解析】(1)由条件可得,解出即可;(2)选①证②,当直线的斜率存在时,设:,,然后联立直线与椭圆的方程消元,然后韦达定理可得,,然后由可算出,即可证明,选②证①,设:,,然后联立直线与椭圆的方程消元,然后韦达定理可得,,然后可算出.【小问1详解】由条件可得,解得所以椭圆方程为【小问2详解】选①证②:当直线的斜率存在时,设:,由得,则,由得即,即所以代入所以所以解得:(舍去),所以直线过定点当直线斜率不存在时,设:所以,由得所以,即,解得所以直线(不符合题意,舍去)综上:直线过定点选②证①:由题意直线的斜率存在,设:由得则,所以.19、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分20、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.21、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.22、(1);(2).【解析】(1)设等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论