版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市大关县二中2026届高二上数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.2.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.3.已知命题p:∀x>2,x2>2x,命题q:∃x0∈R,ln(x02+1)<0,则下列命题是真命题的是()A.p∧ B.p∨C.p∧q D.p∨q4.已知是抛物线上的点,F是抛物线C的焦点,若,则()A.1011 B.2020C.2021 D.20225.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.156.已知向量,若,则()A. B.5C.4 D.7.经过点且圆心是两直线与的交点的圆的方程为()A. B.C. D.8.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.109.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.110.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.11.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.12.下列直线中,倾斜角为45°的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的弦AB的中点为M,O为坐标原点,则直线AB的斜率与直线OM的斜率之积等于_________14.若与直线垂直,那么__________15.已知数列是等差数列,若,则___________.16.已知函数,若过点存在三条直线与曲线相切,则的取值范围为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}的首项a1=1,且an+1=(n∈N*).(1)证明:数列是等比数列;(2)设bn=-,求数列{bn}的前n项和Sn.18.(12分)一款小游戏的规则如下:每盘游戏都需抛掷骰子三次,出现一次或两次“6点”获得15分,出现三次“6点”获得120分,没有出现“6点”则扣除12分(即获得-12分)(Ⅰ)设每盘游戏中出现“6点”的次数为X,求X的分布列;(Ⅱ)玩两盘游戏,求两盘中至少有一盘获得15分概率;(Ⅲ)玩过这款游戏的许多人发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析解释上述现象19.(12分)已知数列中,,的前项和为,且数列是公差为-3的等差数列.(1)求;(2)若,数列前项和为.20.(12分)设数列满足(1)求的通项公式;(2)记数列的前项和为,是否存在实数,使得对任意恒成立.21.(12分)已知椭圆,其上顶点与左右焦点围成的是面积为的正三角形.(1)求椭圆的方程;(2)过椭圆的右焦点的直线(的斜率存在)交椭圆于两点,弦的垂直平分线交轴于点,问:是否是定值?若是,求出定值:若不是,说明理由.22.(10分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D2、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.3、B【解析】取x=4,得出命题p是假命题,由对数的运算得出命题q是假命题,再判断选项.【详解】命题p:∀x>2,x2>2x,是假命题,例如取x=4,则42=24;命题q:∃x0∈R,ln(x02+1)<0,是假命题,∵∀x∈R,ln(x2+1)≥0.则下列命题是真命题的是.故选:B.4、C【解析】结合向量坐标运算以及抛物线的定义求得正确答案.【详解】设,因为是抛物线上的点,F是抛物线C的焦点,所以,准线为:,因此,所以,即,由抛物线的定义可得,所以故选:C5、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.6、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B7、B【解析】求出圆心坐标和半径后,直接写出圆的标准方程.【详解】由得,即所求圆的圆心坐标为.由该圆过点,得其半径为1,故圆的方程为.故选:B.【点睛】本题考查了圆的标准方程,属于基础题.8、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C9、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C10、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.11、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C12、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据点是弦的中点,为坐标原点,利用点差法求解.【详解】设,且,则,(1),(2)得:,,.又,,.故答案为:14、【解析】由两条直线垂直知,得15、8【解析】利用计算可得答案.【详解】设等差数列的公差为,故答案为:8.16、【解析】设过M的切线切点为,求出切线方程,参变分离得,令,则原问题等价于y=g(x)与y=-m-2的图像有三个交点,根据导数研究g(x)的图像即可求出m的范围【详解】,设过点的直线与曲线相切于点,则,化简得,,令,则过点存在三条直线与曲线相切等价于y=g(x)与y=-m-2的图像有三个交点∵,故当x<0或x>1时,,g(x)单调递增;当0<x<1时,,g(x)单调递减,又,,∴g(x)如图,∴-2<-m-2<0,即故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)2-.【解析】(1)根据递推公式,得到,推出,即可证明数列是等比数列;(2)先由(1)求出,即bn=,再错位相减法,即可求出数列的和.【小问1详解】(1)证明:因为an+1=,所以==+,所以-=-=,又a1-≠0,所以数列为以-=为首项,为公比的等比数列.【小问2详解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.18、(Ⅰ)分布列见解析(Ⅱ)(Ⅲ)见解析【解析】(Ⅰ)先得到可能的取值为,,,,根据每次抛掷骰子,出现“6点”的概率为,得到每种取值的概率,得到分布列;(Ⅱ)计算出每盘游戏没有获得15分的概率,从而得到两盘中至少有一盘获得15分的概率;(Ⅲ)设每盘游戏得分为,得到的分布列和数学期望,从而得到结论.【详解】解:(Ⅰ)可能的取值为,,,.每次抛掷骰子,出现“6点”的概率为.,,,,所以X的分布列为:0123(Ⅱ)设每盘游戏没有得到15分为事件,则.设“两盘游戏中至少有一次获得15分”为事件,则因此,玩两盘游戏至少有一次获得15分的概率为.(Ⅲ)设每盘游戏得分为.由(Ⅰ)知,的分布列为:Y-1215120P的数学期望为.这表明,获得分数的期望为负因此,多次游戏之后分数减少的可能性更大【点睛】本题考查求随机变量的分布列和数学期望,求互斥事件的概率,属于中档题.19、(1)(2)【解析】(1)由条件先求出通项公式,得出,再由可得出答案.(2)由(1)可知,由裂项相消法可得答案.【小问1详解】由,则由数列是公差为的等差数列,则所以当时,当时,符合上式所以【小问2详解】由(1)可知则20、(1)(2)存在【解析】(1)利用“退作差”法求得的通项公式.(2)利用裂项求和法求得,由此求得.【小问1详解】依题意①,当时,.当时,②,①-②得,,时,上式也符合.所以.【小问2详解】.所以.故存在实数,使得对任意恒成立.21、(1);(2)是定值,定值为4【解析】(1)根据正三角形性质与面积可求得即可求得方程;(2)当直线斜率不为0时,设其方程代入椭圆方程利用韦达定理求得两根关系式,进而求得的表达式,最后求比值即可;当直线斜率为0时直接求解即可【详解】(1)为正三角形,,可得,且,∴椭圆的方程为.(2)分以下两种情况讨论:①当直线斜率不为0时,设其方程为,且,联立,消去得,则,且,∴弦的中点的坐标为,则弦的垂直平分线为,令,得,,又,;②当直线斜率为0时,则,,则.综合①②得是定值且为4【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省昆明市盘龙区2025-2026学年八年级上学期期末统测语文试卷(含答案)
- 《GAT 1363-2016警用装备仓库物资出库作业规范》专题研究报告
- 2026年深圳中考语文三轮复习冲刺试卷(附答案可下载)
- 2026年深圳中考数学四边形专项训练试卷(附答案可下载)
- 2026年深圳中考生物血管和心脏专项试卷(附答案可下载)
- 2026年人教版化学高一下册期末质量检测卷(附答案解析)
- 2026年广州中考语文题型全解全练试卷(附答案可下载)
- 2026-2032年中国结构粘接密封胶行业市场现状调查及前景战略研判报告
- 2026年文学名著与现代小说阅读理解题
- 虚拟现实体验场所安全管理条例
- 五年级简便计算100题
- 三年级作文写小狗海滩冬天童话故事
- (康德卷)重庆市2024届高三一诊物理试卷(含答案)
- 重庆市沙坪坝小学小学语文五年级上册期末试卷
- 中药制剂技术中职PPT完整全套教学课件
- 龙虎山正一日诵早晚课
- 《国际学术论文写作与发表》学习通超星课后章节答案期末考试题库2023年
- 中考满分(合集15篇)
- 艺术课程标准(2022年版)
- 《大数据营销》-课程教学大纲
- JJF 1654-2017平板电泳仪校准规范
评论
0/150
提交评论