版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省郑州二中数学高二上期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则曲线在点处的切线方程为()A. B.C. D.2.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.83.已知函数,则()A. B.0C. D.14.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.46.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.47.若函数f(x)=x2+x+1在区间内有极值点,则实数a的取值范围是()A. B.C. D.8.数列,,,,…,的通项公式可能是()A. B.C. D.9.设分别为圆和椭圆上的点,则两点间的最大距离是A. B.C. D.10.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.11.设是等比数列,且,,则()A.12 B.24C.30 D.3212.已知圆的圆心在x轴上,半径为1,且过点,圆:,则圆,的公共弦长为A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______14.椭圆的焦距为______.15.设双曲线(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率16.在空间直角坐标系中,已知,,,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,点是椭圆E上一点.(1)求E的方程;(2)设过点的动直线与椭圆E相交于两点,O为坐标原点,求面积的取值范围.18.(12分)阿基米德(公元前年—公元前年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.已知平面直角坐标系中,椭圆:的面积为,两焦点与短轴的一个顶点构成等边三角形.(1)求椭圆的标准方程;(2)过点的直线与交于不同的两点,求面积的最大值.19.(12分)如图所示在多面体中,平面,四边形是正方形,,,,.(1)求证:直线平面;(2)求平面与平面夹角的余弦值.20.(12分)如图1,已知矩形ABCD,,,E,F分别为AB,CD的中点,将ABCD卷成一个圆柱,使得BC与AD重合(如图2),MNGH为圆柱的轴截面,且平面平面MNGH,NG与曲线DE交于点P(1)证明:平面平面MNGH;(2)判断平面PAE与平面PDH夹角与的大小,并说明理由21.(12分)某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.22.(10分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出函数的导函数,再求出,然后利用导数的几何意义求解作答.【详解】函数,求导得:,则,而,于是得:,即,所以曲线在点处的切线方程为.故选:A2、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A3、B【解析】先求导,再代入求值.详解】,所以.故选:B4、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.5、C【解析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C6、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.7、C【解析】若f(x)=x2+x+1在区间内有极值点,则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图象顶点的横坐标.由x2-ax+1=0,得a=x+.因为x∈,y=x+的值域是,当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意.所以实数a的取值范围是,故选C.8、D【解析】利用数列前几项排除A、B、C,即可得解;【详解】解:由,排除A,C,由,排除B,分母为奇数列,分子为,故数列的通项公式可以为,故选:D9、D【解析】转化为圆心到椭圆上点的距离的最大值加(半径).【详解】设,圆心为,则,当时,取到最大值,∴最大值为故选:D.【点睛】本题考查圆上点与椭圆上点的距离的最值问题,解题关键是圆上的点转化为圆心,利用圆心到动点距离的最值加(或减)半径得出结论10、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.11、D【解析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题12、A【解析】根据题意设圆方程为:,代点即可求出,进而求出方程,两圆方程做差即可求得公共弦所在直线方程,再利用垂径定理去求弦长.【详解】设圆的圆心为,则其标准方程为:,将点代入方程,解得,故方程为:,两圆,方程作差得其公共弦所在直线方程为:,圆心到该直线的距离为,因此公共弦长为,故选:A.【点睛】本题综合考查圆的方程及直线与圆,圆与圆位置关系,属于中档题.一般遇见直线与圆相交问题时,常利用垂径定理解决问题.二、填空题:本题共4小题,每小题5分,共20分。13、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:12014、【解析】由求出即可.【详解】可化为,设焦距为,则,则焦距故答案为:15、e=2.【解析】先求出直线的方程,利用原点到直线的距离为,,求出的值,进而根据求出离心率【详解】由l过两点(a,0),(0,b),得l的方程为bx+ay-ab=0.由原点到l的距离为c,得=c.将b=代入平方后整理,得162-16·+3=0.解关于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴应舍去e=.故所求离心率e=2.【点睛】本题考查双曲线性质,考查求双曲线的离心率常用的方法即构造出关于的等式,属于中档题16、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)列出关于a、b、c的方程组即可求解;(2)根据题意,直线l斜率存在,设其方程为,代入椭圆方程消去y得到关于x的二次方程,根据韦达定理得到根与系数的关系,求出PQ长度,求出原点到l的距离,根据三角形面积公式表示出△OPQ的面积,利用基本不等式求解其范围即可.【小问1详解】由题设知,解得.∴椭圆E的方程为;【小问2详解】当轴时不合题意,故可设,则,得.由题意知,即,得.从而.又点O到直线的距离,∴,令,则,,,所求面积的取值范围为.18、(1);(2).【解析】(1)根据题意计算得到,得到椭圆方程.(2)设直线的方程为,联立方程,根据韦达定理得到,,表示出,解得答案.【详解】(1)依题意有解得所以椭圆的标准方程是.(2)由题意直线的斜率不能为,设直线的方程为,由方程组得,设,,所以,,所以,所以,令(),则,,因为在上单调递增,所以当,即时,面积取得最大值为.【点睛】本题考查了椭圆方程,椭圆内三角形面积的最值问题,意在考查学生的计算能力和综合应用能力.19、(1)证明见解析;(2).【解析】(1)以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,利用空间向量法可证明出直线平面;(2)利用空间向量法可求得平面与平面夹角的余弦值.【小问1详解】证明:因为平面,,以点为坐标原点,分别以、、为、、轴建立空间直角坐标系,则、、、、、,所以,,,设平面的法向量为,依题意有,即,令,可得,,则,平面,因此,平面.【小问2详解】解:由题,,设平面的法向量为,依题意有,即,取,可得,,因此,平面与平面的夹角余弦值为.20、(1)证明见解析(2)平面PAE与平面PDH夹角大于,理由见解析【解析】(1)由面面垂直证明,然后得证平面MNGH后可得面面垂直;(2)建立如图所示的空间直角坐标系,用空间向量法求出二面角的余弦可得结论【小问1详解】如图O,为圆柱上,下底面的中心,可知,,平面平面MNGH,所以是二面角的平面角,平面平面MNGH,所以,即,,平面MNGH,所以平面MNGH,因为平面PAE,所以平面平面MNGH;【小问2详解】因为,所以得,如图,以为坐标原点,以,,所在直线为x,y,z轴建立空间直角坐标系,则可知,,,,,则,,,,设平面AEP的法向量为,则,令,得,设平面DHP的法向量为,则,即令,得,,设平面PAE与平面PDH夹角为,则,,因为,即,所以平面PAE与平面PDH夹角大于21、(1)公司每天包裹的平均数和中位数都为260件.(2)该公司平均每天的利润有1000元.(3).【解析】(1)对于平均数,运用平均数的公式即可;由于中位数将频率分布直方图分成面积相等的两部分,先确定中位数位于哪一组,然后建
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 28158-2025国际贸易业务的职业分类与资质管理
- 临床医学麻醉学(呼吸功能的监控)试题及答案
- 电池试制工效率提升考核试卷及答案
- 急症患者入院试题及答案
- (班组级)吊装安装三级安全教育考试卷及答案
- 妇产科护理学模拟练习题含参考答案
- 临床护理实践指南考试复习题库(含答案)
- 一套机械工程师常见面试题目(含答案)
- 失禁性皮炎试题及答案
- 2025年行政执法人员考试试题库及参考答案
- 医用手术器械讲解
- 肿瘤晚期呼吸困难治疗
- 车间电缆整改方案模板(3篇)
- 徐州村务管理办法
- 冰芯气泡古大气重建-洞察及研究
- 广东省惠州市2026届高三上学期第一次调研考试 历史 含答案
- DB50∕T 1604-2024 地质灾害防治边坡工程结构可靠性设计规范
- 中国电气装备资产管理有限公司招聘笔试题库2025
- 糖尿病足的护理常规讲课件
- JG/T 155-2014电动平开、推拉围墙大门
- 运输居间协议书范本
评论
0/150
提交评论