版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滕州市2026届高二上数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.5122.宋元时期数学名著《算学启蒙》中有关于“松竹并生"的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的,分别为3,1,则输出的等于A.5 B.4C.3 D.23.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.84.已知向量,,且,则实数等于()A.1 B.2C. D.5.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题6.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.7.已知集合,,则中元素的个数为()A.3 B.2C.1 D.08.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.129.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.10.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.111.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切12.已知数列是首项为,公差为1的等差数列,数列满足.若对任意的,都有成立,则实数的取值范围是()A., B.C., D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.14.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.15.已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为______;(2)点F到直线DE距离的最小值为______.16.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值18.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项19.(12分)已知椭圆经过点,椭圆E的一个焦点为.(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于两点.求的最大值.20.(12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点(1)若,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值21.(12分)中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=,椭圆的长半轴长与双曲线半实轴长之差为4,离心率之比为3∶7(1)求这两曲线方程;(2)若P为这两曲线的一个交点,求△F1PF2的面积22.(10分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.2、B【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案【详解】解:当n=1时,a=3,b=2,满足进行循环的条件,当n=2时,a,b=4,满足进行循环的条件,当n=3时,a,b=8,满足进行循环的条件,当n=4时,a,b=16,不满足进行循环的条件,故输出的n值为4,故选:B【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答3、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.4、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C5、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A6、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.7、B【解析】集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.8、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D9、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.10、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.11、D【解析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.12、D【解析】由等差数列通项公式得,再结合题意得数列单调递增,且满足,,即,再解不等式即可得答案.【详解】解:根据题意:数列是首项为,公差为1的等差数列,所以,由于数列满足,所以对任意的都成立,故数列单调递增,且满足,,所以,解得故选:二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.14、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:415、①.;②..【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,,,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.16、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)服务通道的长为千米(2)时,折线赛道的长度最大,最大值为千米【解析】(1)先在中利用正弦定理得到长度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根据基本等式求解最值即可.【小问1详解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(负值舍去)所以服务通道的长为千米【小问2详解】在中,由余弦定理得:,即,所以因为,所以,所以,即(当且仅当时取等号)即当时,折线赛道的长度最大,最大值为千米18、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有,所以;【小问2详解】由(1)可知:,当时,有最大项,最大项为:.19、(1)(2)【解析】(1)设椭圆的左,右焦点分别为,.利用椭圆的定义求出,然后求解,得到椭圆方程;(2)当直线的斜率存在时,设,,,,,联立直线与椭圆方程,利用韦达定理以及弦长公式得到弦长的表达式,再通过换元利用二次函数的性质求解最值即可【小问1详解】依题意,设椭圆的左,右焦点分别为,则,,,,椭圆的方程为【小问2详解】当直线的斜率存在时,设,,,,由得由得由,得设,则,当直线的斜率不存在时,,的最大值为20、(1);(2)面积最小值是4【解析】本题主要考查抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,依题意F(1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,得,由此能够求出直线AB的斜率;第二问,由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于,由此能求出四边形OACB的面积的最小值试题解析:(1)依题意知F(1,0),设直线AB方程为.将直线AB的方程与抛物线的方程联立,消去x得.设,,所以,.①因为,所以.②联立①和②,消去,得所以直线AB的斜率是(2)由点C与原点O关于点M对称,得M是线段OC中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于因为,所以当m=0时,四边形OACB的面积最小,最小值是4考点:抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率21、(1)椭圆方程为双曲线方程为;(2)12【解析】(1)根据半焦距,设椭圆长半轴为a,由离心率之比求出a,进而求出椭圆短半轴的长及双曲线的虚半轴的长,写出椭圆和双曲线的标准方程;(2)由椭圆、双曲线的定义求出与的长,在三角形中,利用余弦定理求出cos∠的值,进一步求得sin∠的值,代入面积公式得答案试题解析:(1)设椭圆方程为,双曲线方程为(a,b,m,n>0,且a>b),则解得:a=7,m=3,∴b=6,n=2,∴椭圆方程为双曲线方程为(2)不妨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 锦州市太和区社区《网格员》真题汇编(含答案)
- PICC测试题附答案
- 三基护理管理试题及答案
- 岚皋县辅警招聘考试试题库带答案
- 本科护理操作题库及答案
- 高频c语言面试试题及答案
- 永德县辅警招聘公安基础知识考试题库及答案
- 心理精神科护理试题及参考答案
- 2025年质量工程师职业能力评估试题集(附答案)
- 特殊儿童早期干预自考试卷四真题及答案
- 消化内镜ERCP技术改良
- DB37-T6005-2026人为水土流失风险分级评价技术规范
- 云南师大附中2026届高三1月高考适应性月考卷英语(六)含答案
- 2026湖北随州农商银行科技研发中心第二批人员招聘9人笔试备考试题及答案解析
- 纪念馆新馆项目可行性研究报告
- 仁爱科普版(2024)八年级上册英语Unit1~Unit6补全对话练习题(含答案)
- 骑行美食活动方案策划(3篇)
- 石化企业环保培训课件
- 2026年吕梁职业技术学院单招职业技能考试备考试题带答案解析
- 2025年新疆师范大学辅导员招聘考试真题及答案
- 电梯更新改造方案
评论
0/150
提交评论