2026届华大新高二上数学期末综合测试试题含解析_第1页
2026届华大新高二上数学期末综合测试试题含解析_第2页
2026届华大新高二上数学期末综合测试试题含解析_第3页
2026届华大新高二上数学期末综合测试试题含解析_第4页
2026届华大新高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届华大新高二上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.20222.若函数的导函数为偶函数,则的解析式可能是()A. B.C. D.3.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.4.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.5.已知随机变量,且,,则为()A.0.1358 B.0.2716C.0.1359 D.0.27186.现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重()斤A.6 B.7C.9 D.157.已知直线:和:,若,则实数的值为()A. B.3C.-1或3 D.-18.若圆C与直线:和:都相切,且圆心在y轴上,则圆C的方程为()A. B.C. D.9.在等差数列中,若,则()A.6 B.9C.11 D.2410.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac>bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若,则a<b12.已知,则下列说法中一定正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆:的长轴长为4,焦距为2,则椭圆的标准方程为______.14.与圆外切于原点,且被y轴截得的弦长为8的圆的标准方程为__________15.已知,且,则的最小值为____________16.抛物线的焦点坐标为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2017年厦门金砖会晤期间产生碳排放3095吨.2018年起厦门市政府在下潭尾湿地生态公园通过种植红树林的方式中和会晤期间产生的碳排放,拟用20年时间将碳排放全部吸收,实现“零碳排放”目标,向世界传递低碳,环保办会的积极信号,践行金砖国家倡导的可持续发展精神据研究估算,红树林的年碳吸收量随着林龄每年递增2%,2018年公园已有的红树林年碳吸收量为130吨,如果从2019年起每年新种植红树林若干亩,新种植的红树林当年的年碳吸收量为m()吨.2018年起,红树林的年碳吸收量依次记,,,…(1)①写出一个递推公式,表示与之间的关系;②证明:是等比数列,并求的通项公式;(2)为了提前5年实现厦门会晤“零碳排放”的目标,m的最小值为多少?参考数据:,,18.(12分)已知数列满足,且.(1)求数列的通项公式;(2)若,为数列的前n项和,求.19.(12分)已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值20.(12分)已知抛物线的焦点是椭圆的一个焦点,直线交抛物线E于两点(1)求E的方程;(2)若以BC为直径的圆过原点O,求直线l的方程21.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长22.(10分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.2、C【解析】根据题意,求出每个函数的导函数,进而判断答案.【详解】对A,,为奇函数;对B,,为奇函数;对C,,为偶函数;对D,,既不是奇函数也不是偶函数.故选:C.3、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D4、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误5、C【解析】根据正态分布的对称性可求概率.【详解】由题设可得,,故选:C.6、D【解析】设该等差数列为,其公差为,根据题意和等差数列的性质可得,进而求出结果.【详解】设该等差数列为,其公差为,由题意知,,由,解得,所以.故选:D7、D【解析】利用两直线平行列式求出a值,再验证即可判断作答.【详解】因,则,解得或,当时,与重合,不符合题意,当时,,符合题意,所以实数的值为-1.故选:D8、B【解析】首先求出两平行直线间的距离,即可求出圆的半径,设圆心坐标为,,利用圆心到直线的距离等于半径得到方程,求出的值,即可得解;【详解】解:因为直线:和:的距离,由圆C与直线:和:都相切,所以圆的半径为,又圆心在轴上,设圆心坐标为,,所以圆心到直线的距离等于半径,即,所以或(舍去),所以圆心坐标为,故圆的方程为;故选:B9、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B10、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D11、D【解析】运用不等式性质,结合特殊值法,对选项注逐一判断正误即可.【详解】选项A中,若,时,则成立,否则,若,则,显然错误,故选项A错误;选项B中,若,,则能推出,否则,若,则,显然错误,故选项B错误;选项C中,若,则,显然错误,故选项C错误;选项D中,若,显然,由不等式性质知不等式两边同乘以一个正数,不等式不变号,即.故选:D12、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由焦距可得c,长轴长得到a,再根据可得答案.【详解】因为椭圆的长轴长为4,则,焦距为2,由,得,则椭圆的标准方程为:.故答案为:.14、;【解析】设所求圆的圆心为,根据两圆外切于原点可知两圆心与原点共线,再根据弦长列出方程组求出即可.【详解】设所求圆的圆心为,因为圆的圆心为,与原点连线的斜率为,又所求圆与已知圆外切于原点,,①所以所求圆的半径满足,又被y轴截得的弦长为8,②由①②解得,所以圆的方程为.故答案为:15、16【解析】根据,且,利用“1”的代换将,转化为,再利用基本不等式求解.【详解】因为,且,所以,当且仅当,,即时,取等号.所以的最小值为16.故答案为:16【点睛】本题主要考查基本不等式求最值,还考查了运算求解的能力,属于基础题.16、【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标.解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写考点:抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;②证明见解析,(2)最少为6.56吨【解析】(1)①根据题意直接写出一个递推公式即可;②要证明是等比数列,只要证明为一个常数即可,求出等比数列的通项公式,即可求出的通项公式;(2)记为数列的前n项和,根据题意求出,利用分组求和法求出数列的前n项和,再令,解之即可得出答案.【小问1详解】解:①依题意得,则,②因为,所以,所以,因为所以数列是等比数列,首项是,公比是1.02,所以,所以;【小问2详解】解:记为数列的前n项和,,依题,所以,所以m最少为6.56吨18、(1)(2)【解析】(1)由题意可得数列是以2为公差的等差数列,再由可求出,从而可求出通项公式,(2)由(1)可得,然后利用分组求和可求出【小问1详解】因为数列满足,所以数列是以2为公差的等差数列,因为,所以,得,所以【小问2详解】由(1)可得,所以19、(1)(2)10【解析】(1)设等差数列的公差为d,利用已知建立方程组,解之可求得数列的通项公式;(2)利用等差数列的前项和公式,化简即可求解.【小问1详解】解:设等差数列的公差为d,由已知,,得,解得,则;小问2详解】解:由(1)得,则由,得或(舍去),所以的值为10.20、(1);(2).【解析】(1)利用椭圆的焦点与抛物线的焦点相同,列出方程求解即可(2)设,、,,联立直线与抛物线方程,利用韦达定理,通过,求出,得到直线方程【小问1详解】由题意知:,,∴的方程是【小问2详解】设,、,,由题意知,由,得,∴,,,∵以为直径的圆过点,∴,即,∴,解得,∴直线的方程是21、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,22、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论