江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题含解析_第1页
江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题含解析_第2页
江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题含解析_第3页
江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题含解析_第4页
江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东台市梁垛镇中学2026届数学高二上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.若圆与直线相切,则实数的值为()A. B.或3C. D.或3.已知正实数满足,则的最小值为()A. B.9C. D.4.对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列6.已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A. B.C. D.7.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定8.若集合,,则A. B.C. D.9.如图,在长方体中,若,,则异面直线和所成角的余弦值为()A. B.C. D.10.已知下列四个命题,其中正确的是()A. B.C. D.11.已知等比数列满足,,则()A.21 B.42C.63 D.8412.已知i是虚数单位,复数z=,则复数z的虚部为()A.i B.-iC.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.如图,正四棱锥的棱长均为2,点E为侧棱PD的中点.若点M,N分别为直线AB,CE上的动点,则MN的最小值为______14.已知直线与直线平行,则直线,之间的距离为__________.15.设,则_________16.在等差数列中,前n项和记作,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且.(1)求C;(2)若D是BC的中点,,,求AB的长.18.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.19.(12分)如图,在四棱锥中,平面,,且,,,,,为的中点(1)求证:平面;(2)在线段上是否存在一点,使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由20.(12分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?21.(12分)如图所示,第九届亚洲机器人锦标赛VEX中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD(包含边界和内部,A为坐标原点),AD长为10米,在AB边上距离A点4米的F处放置一只电子狗,在距离A点2米的E处放置一个机器人,机器人行走速度为v,电子狗行走速度为,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M,那么电子狗将被机器人捕获,点M叫成功点.(1)求在这个矩形场地内成功点M的轨迹方程;(2)P为矩形场地AD边上的一动点,若存在两个成功点到直线FP的距离为,且直线FP与点M的轨迹没有公共点,求P点横坐标的取值范围.22.(10分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C2、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.3、A【解析】根据,将式子化为,进而化简,然后结合基本不等式求得答案.【详解】因为,所以,当且仅当,即时取等号,所以的最小值为.故选:A.4、B【解析】根据平面的性质分别判断充分性和必要性.【详解】充分性:若内有无数多个点到的距离相等,则、平行或相交,故充分性不成立;必要性:若,则内每个点到的距离相等,故必要性成立,所以“内有无数多个点到的距离相等”是“”的必要不充分条件.故选:B.5、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.6、A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;②利用求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.7、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.8、A【解析】通过解不等式得出集合B,可以做出集合A与集合B的关系示意图,可得出选项.【详解】因为,解不等式即,所以或,所以集合,作出集合A与集合B的示意图如下图所示:所以:,故选A【点睛】本题考查集合间的交集运算,属于基础题.9、D【解析】根据长方体中,异面直线和所成角即为直线和所成角,再结合余弦定理即可求解.【详解】解:连接、,如下图所示由图可知,在长方体中,且,所以,所以异面直线和所成角即为,又,,由余弦定理可得∶故选:D.10、B【解析】根据基本初等函数的求导公式和求导法则即可求解判断.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B.11、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D12、C【解析】先通过复数的除法运算求出z,进而求出虚部.【详解】由题意,,则z的虚部为1.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,先建立空间直角坐标系,然后写出相关点的坐标,再写出相关的向量,然后根据点分别为直线上写出点的坐标,这样就得到,然后根据的取值范围而确定【详解】建立如图所示的空间直角坐标系,则有:,,,,,可得:设,且则有:,可得:则有:故则当且仅当时,故答案为:14、【解析】利用直线平行与斜率之间的关系、点到直线的距离公式即可得出【详解】解:因为直线与直线平行,所以,解得,当时,,,则故答案为:【点睛】熟练运用直线平行与斜率之间的关系、点到直线的距离公式,是解题关键15、【解析】求出函数的导数,再令,即可得出答案.【详解】解:由,得,所以.故答案为:.16、16【解析】根据等差数列前项和公式及下标和性质以及通项公式计算可得;【详解】解:因为,所以,即,所以,所以,所以;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据正弦定理化边为角,结合三角变换可求答案;(2)根据余弦定理先求,再用余弦定理求解.【小问1详解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小问2详解】设,则,即,解得或(舍去),∴.∵,∴.18、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.19、(1)证明见解析;(2)存在,.【解析】(1)建立空间直角坐标系,求出平面的法向量和直线的单位向量,从而可证明线面平行.(2)令,,设,求出,结合已知条件可列出关于的方程,从而可求出的值.【详解】证明:过作于点,则,以为原点,,,所在的直线分别为,,轴建立如图所示的空间直角坐标系则,,,

,,,∵为的中点.∴.则,,,设平面的法向量为,则令,则,,∴.∴,即,又平面.∴平面解:令,,设,∴.∴,∴

.由知,平面的法向量为.∵直线与平面所成角的正弦值为,∴,化简得,即,∵,∴,故【点睛】本题考查了利用空间向量证明线面平行,考查了平面法向量的求解,属于中档题.20、(1)详解解析;(2)存在.【解析】(1)利用勾股定理证得,结合线面垂直的判定定理即可证得结论;(2)以A为原点建立空间直角坐标系,设点,,求得平面的法向量,利用已知条件建立关于的方程,进而得解.【小问1详解】取中点为,连接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小问2详解】以A为坐标原点,以为x轴,为y轴,为z轴建立空间直角坐标系,则,,,,设点,因为点F在线段上,设,,,设平面的法向量为,,,则,令,则,设直线CF与平面所成角为,,解得或(舍去),,此时点F是的三等分点,所以在线段上是存在一点,使直线与平面所成角的正弦值等于.21、(1)(2)【解析】(1)分别以为轴,建立平面直角坐标系,由题意,利用两点间的距离公式可得答案.(2)由题意可得点的轨迹所在圆的圆心到直线的距离,点的轨迹与轴的交点到直线的距离,从而可得答案.【小问1详解】分别以为轴,建立平面直角坐标系,则,设成功点,可得即,化简得因为点需在矩形场地内,所以故所求轨迹方程为【小问2详解】设,直线方程为直线FP与点M轨迹没有公共点,则圆心到直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论