江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题含解析_第1页
江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题含解析_第2页
江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题含解析_第3页
江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题含解析_第4页
江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市第三高级中学2026届数学高一上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若角的终边过点,则A. B.C. D.2.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.814.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.5.已知集合,则(

)A. B.C. D.6.角的终边过点,则()A. B.C. D.7.已知正实数满足,则最小值为A. B.C. D.8.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,小数记录法的数据V和五分记录法的数据L满足,已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(注:)A.0.6 B.0.8C.1.2 D.1.59.已知函数,若关于x的方程有五个不同实根,则m的值是()A.0或 B.C.0 D.不存在10.函数的图像可能是().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数(是常数)的图象经过点,那么________12.如果在实数运算中定义新运算“”:当时,;当时,.那么函数的零点个数为______13.设是以2为周期的奇函数,且,若,则的值等于___14.过点P(4,2)并且在两坐标轴上截距相等的直线方程为(化为一般式)________.15.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________16.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的函数为常数).(1)求的奇偶性;(2)已知在上有且只有一个零点,求实数a的值.18.如图,欲在山林一侧建矩形苗圃,苗圃左侧为林地,三面通道各宽,苗圃与通道之间由栅栏隔开(1)若苗圃面积,求栅栏总长的最小值;(2)若苗圃带通道占地总面积为,求苗圃面积的最大值19.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.20.已知函数为奇函数(1)求实数k值;(2)设,证明:函数在上是减函数;(3)若函数,且在上只有一个零点,求实数m的取值范围21.已知奇函数和偶函数满足(1)求和的解析式;(2)存在,,使得成立,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】角的终边过点,所以.由角,得.故选D.2、C【解析】根据正弦型函数的性质逐一判断即可.【详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C3、B【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.4、C【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题5、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题6、B【解析】由余弦函数的定义计算【详解】由题意到原点的距离为,所以故选:B7、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值8、B【解析】当时,即可得到答案.【详解】由题意可得当时故选:B9、C【解析】令,做出的图像,根据图像确定至多存在两个的值,使得与有五个交点时,的值或取值范围,进而转为求方程在的值或取值范围有解,利用一元二次方程根的分布,即可求解.【详解】做出图像如下图所示:令,方程,为,当时,方程没有实数解,当或时,方程有2个实数解,当,方程有4个实数解,当时,方程有3个解,要使方程方程有五个实根,则方程有一根为1,另一根为0或大于1,当时,有或,当时,,或,满足题意,当时,,或,不合题意,所以.故选:C.【点睛】本题考查复合方程的解,换元法是解题的关键,数形结合是解题的依赖,或直接用选项中的值代入验证,属于较难题.10、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先代入函数解析式求出,即可得到函数解析式,再代入求出函数值即可;【详解】解:因为幂函数(是常数)的图象经过点,所以,所以,所以,所以;故答案:12、【解析】化简函数的解析式,解方程,即可得解.【详解】当时,即当时,由,可得;当时,即当时,由,可得(舍).综上所述,函数的零点个数为.故答案为:.13、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:14、或【解析】根据直线在两坐标轴上截距相等,则截距可能为也可能不为,再结合直线方程求法,即可对本题求解【详解】由题意,设直线在两坐标轴上的截距均为,当时,设直线方程为:,因为直线过点,所以,即,所以直线方程为:,即:,当时,直线过点,且又过点,所以直线的方程为,即:,综上,直线的方程为:或.故答案为:或【点睛】本题考查直线方程的求解,考查能力辨析能力,应特别注意,截距相等,要分截距均为和均不为两种情况分别讨论.15、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果16、【解析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)偶函数,证明见解析,(2)【解析】(1)利用定义判断函数的奇偶性;(2)利用该函数的对称性,数形结合得到实数a的值.【详解】(1)函数的定义域为R,,即,∴为偶函数,(2)y=f(x)的图象关于y轴对称,由题意知f(x)=0只有x=0这一个零点,把(0,0)代入函数表达式得:a2+2a﹣3=0,解得:a=﹣3,或a=1,当a=1时,在上单调递增,∴此时显然符合条件;当a=﹣3时,,,即,即在上存在零点,知f(x)至少有三个根,不符合所以,符合条件的实数a的值为1【点睛】本题主要考查函数零点的概念,要注意函数的零点不是点,而是函数f(x)=0时的x的值,属于中档题18、(1)200米(2)4608平方米【解析】(1)设苗圃的两边长分别为a,b,依题意列出已知和所求,由基本不等式直接可得;(2)根据题意列出已知,利用基本不等式将条件化为不等式,然后解不等式可得.【小问1详解】设苗圃的两边长分别为a,b(如图),则,,当且仅当即时取“=”,故栅栏总长的最小值为200米【小问2详解】,而,故,令,则,因式分解为,解得,所以,,当且仅当,即时取“=”,故苗圃面积的最大值为4608平方米19、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为20、(1)-1;(2)见解析;(3).【解析】(1)由于为奇函数,可得,即可得出;(2)利用对数函数的单调性和不等式的性质通过作差即可得出;(3)利用(2)函数的单调性、指数函数的单调性,以及零点存在性定理即可得出m取值范围【小问1详解】为奇函数,,即,,整理得,使无意义而舍去)【小问2详解】由(1),故,设,(a)(b)时,,,,(a)(b),在上时减函数;【小问3详解】由(2)知,h(x)在上单调递减,根据复合函数的单调性可知在递增,又∵y=在R上单调递增,在递增,在区间上只有一个零点,(4)(5)≤0,解得.21、(1),(2)【解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论