版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省烟台市第二中学数学高二上期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知O为坐标原点,,点P是上一点,则当取得最小值时,点P的坐标为()A. B.C. D.2.已知椭圆与圆在第二象限的交点是点,是椭圆的左焦点,为坐标原点,到直线的距离是,则椭圆的离心率是()A. B.C. D.3.已知函数,则等于()A.0 B.2C. D.4.双曲线的渐近线方程为A. B.C. D.5.设函数在上单调递减,则实数的取值范围是()A. B.C. D.6.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.7.直线与椭圆交于两点,以线段为直径的圆恰好经过椭圆的左焦点,则此椭圆的离心率为()A B.C. D.8.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,309.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形10.圆与圆的位置关系是()A.外离 B.外切C.相交 D.内切11.若倾斜角为的直线过,两点,则实数()A. B.C. D.12.已知,,,则最小值是()A.10 B.9C.8 D.7二、填空题:本题共4小题,每小题5分,共20分。13.在平行六面体中,点P是AC与BD的交点,若,且,则___________.14.某几何体的三视图如图所示,则该几何体的体积为______.15.双曲线的离心率为____16.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:经过点.(1)求抛物线C的方程及其准线方程;(2)经过抛物线C的焦点F的直线l与抛物线交于两点M,N,且与抛物线的准线交于点Q.若,求直线l的方程.18.(12分)已知抛物线与直线相切.(1)求该抛物线的方程;(2)在轴的正半轴上,是否存在某个确定的点M,过该点的动直线与抛物线C交于A,B两点,使得为定值.如果存在,求出点M的坐标;如果不存在,请说明理由.19.(12分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点20.(12分)新冠肺炎疫情发生以来,我国某科研机构开展应急科研攻关,研制了一种新型冠状病毒疫苗,并已进入二期临床试验.根据普遍规律,志愿者接种疫苗后体内会产生抗体,人体中检测到抗体,说明有抵御病毒的能力.通过检测,用表示注射疫苗后的天数,表示人体中抗体含量水平(单位:,即:百万国际单位/毫升),现测得某志愿者的相关数据如下表所示:天数123456抗体含量水平510265096195根据以上数据,绘制了散点图.(1)根据散点图判断,与(a,b,c,d均为大于0的实数)哪一个更适宜作为描述y与x关系的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果求出y关于x的回归方程,并预测该志愿者在注射疫苗后的第10天的抗体含量水平值;(3)从这位志愿者前6天的检测数据中随机抽取4天的数据作进一步的分析,记其中的y值大于50的天数为X,求X的分布列与数学期望.参考数据:3.5063.673.4917.509.4912.95519.014023.87其中.参考公式:用最小二乘法求经过点,,,,的线性回归方程的系数公式,;.21.(12分)已知三角形的内角所对的边分别为,且C为钝角.(1)求cosA;(2)若,,求三角形的面积.22.(10分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三点共线,可得,然后利用向量的减法坐标运算,分别求得,最后计算,经过化简观察,可得结果.【详解】设,则则∴当时,取最小值为-10,此时点P的坐标为.故选:A【点睛】本题主要考查向量数量积的坐标运算,难点在于三点共线,审清题干,简单计算,属基础题.2、B【解析】连接,得到,作,求得,利用椭圆的定义,可求得,在直角中,利用勾股定理,整理的,即可求解椭圆的离心率.【详解】如图所示,连接,因为圆,可得,过点作,可得,且,由椭圆的定义,可得,所以,在直角中,可得,即,整理得,两侧同除,可得,解得或,又因为,所以椭圆的离心率为.故选:B【点睛】本题主要考查了椭圆的定义,直角三角形的勾股定理,以及椭圆的离心率的求解,其中解答中熟记椭圆的定义,结合直角三角形的勾股定理,列出关于的方程是解答的关键,着重考查了推理与计算能力,属于基础题.3、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.4、A【解析】根据双曲线的渐近线方程知,,故选A.5、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.6、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C7、D【解析】根据题意作出示意图,根据圆的性质以及直线的倾斜角求解出的长度,再根据椭圆的定义求解出的关系,则椭圆离心率可求.【详解】设椭圆的左右焦点分别为,如下图:因为以线段为直径的圆恰好经过椭圆的左焦点,所以且,所以,又因为的倾斜角为,所以,所以为等边三角形,所以,所以,因为,所以,所以,所以,所以,故选:D.8、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A9、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C10、C【解析】利用圆心距与半径的关系确定正确选项.【详解】圆的圆心为,半径为,圆的圆心为,半径为,圆心距为,,所以两圆相交.故选:C11、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C12、B【解析】利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值【详解】∵,,,∴=,当且仅当,即时等号成立故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由向量的运算法则,求得,根据,结合向量的数量积的运算,即可求解.【详解】由题意可得,,则,故.故答案为:14、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:15、【解析】由题意得:考点:双曲线离心率16、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线C的方程为,准线方程为(2)或.【解析】(1)将点代入抛物线求出即可得出抛物线方程和准线方程;(2)设出直线方程,与抛物线联立,表示出弦长和即可求出.【小问1详解】将代入可得,解得,所以抛物线C的方程为,准线方程为;【小问2详解】由题得,设直线方程为,,设,联立方程,可得,则,所以,因为直线与准线交于点Q,则,则,因为,所以,解得,所以直线l的方程为或.18、(1);(2).【解析】(1)直线与抛物线相切,所以有,可解得,得抛物线方程.(2)联立直线与抛物线有,把目标式坐标化可得与无关,可得.试题解析:(1)联立方程有,,有,由于直线与抛物线相切,得,所以.(2)假设存在满足条件的点,直线,有,,设,有,,,,当时,为定值,所以.19、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式可得出关于的等式,解出正数的值,即可得出抛物线的标准方程;(2)设点、,利用斜率公式结合已知条件可得出的值,分析可知直线不与轴垂直,可设直线的方程为,将该直线方程与抛物线的方程联立,利用韦达定理求出的值,即可得出结论.【小问1详解】解:抛物线的焦点为,由已知可得,则,,,解得,因此,抛物线的方程为.【小问2详解】证明:设点、,则,可得.若直线轴,则该直线与抛物线只有一个交点,不合乎题意.设直线的方程为,联立,可得,由韦达定理可得,可得,此时,合乎题意.所以,直线的方程为,故直线恒过定点.20、(1)(2),4023.87(3)分布列答案见解析,数学期望:【解析】(1)由于这些点分布在一条曲线的附近,从而可选出回归方程,(2)设,,则建立w关于x的回归方程,然后根据公式和表中的数据求解回归方程即可,再将代入回归方程可求得在注射疫苗后的第10天的抗体含量水平值,(3)由题意可知x的可能取值为0,1,2,然后求对应的概率,从而可求出分布列和期望【小问1详解】根据散点图可知这些点分布在一条曲线的附近,所以更适合作为描述y与x关系的回归方程类型.【小问2详解】设,变换后可得,设,建立w关于x的回归方程,,所以所以w关于x的回归方程为,所以,当时,,即该志愿者在注射疫苗后的第10天的抗体含量水平值约为4023.87miu/mL.【小问3详解】由表格数据可知,第5,6天的y值大于50,故x的可能取值为0,1,2,,,,X的分布列为012.21、(1)(2)【解析】(1)由正弦定理边化角,可求得角的正弦,由同角关系结合条件可得答案.(2)由(1),由余弦定理,求出边的长,进一步求得面积【小问1详解】因为,由正弦定理得因,所以.因为角为钝角,所以角为锐角,所以【小问2详解】由(1),由余弦定理,得,所以,解得或,不合题意舍去,故的面积为=22、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年企业数字化转型日程库方案
- 2026年城市色彩规划管理方案
- 地下污染修复-洞察与解读
- 基于AR的多模态交互技术研究-洞察与解读
- 容器环境隔离-洞察与解读
- 水电站水库监测与预警方案
- 口腔预防科知识培训课件
- 医学检验技术测试题带答案
- 医疗卫生结构化面试题库(+答案)
- 二级建造师考试试题及答案
- 2025年低压电工理论考试1000题(附答案)
- 《质量管理体系成熟度评价指南》
- 典亮青春护航成长“民法典进校园”主题讲座
- 教你填《广东省普通高中学生档案》精编版
- 大学生兼职家教个人简历
- 转动极板技术简介
- 以学习项目构建学习任务序列化尝试(选必修第三单元) 论文
- 《人类行为与社会环境》课件
- 通用技术技术与设计2必修2高二下期全套教案
- GB∕T 39402-2020 面向人机协作的工业机器人设计规范
- 国家开放大学《理工英语1》边学边练参考答案
评论
0/150
提交评论