2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题含解析_第1页
2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题含解析_第2页
2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题含解析_第3页
2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题含解析_第4页
2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省临夏回族自治州临夏中学数学高二上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.22.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.994.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.45.如图,在正方体中,,,,若为的中点,在上,且,则等于()A. B.C. D.6.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.7.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.8.已知椭圆:的离心率为,则实数()A. B.C. D.9.已知函数在处取得极值,则的极大值为()A. B.C. D.10.过双曲线(,)的左焦点作圆:的两条切线,切点分别为,,双曲线的左顶点为,若,则双曲线的渐近线方程为()A. B.C. D.11.在等差数列中,若,则的值为()A. B.C. D.12.已知为虚数单位,复数是纯虚数,则()A B.4C.3 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前4项依次为,,,,则的一个通项公式为________14.直线的倾斜角的取值范围是______.15.已知三角形OAB顶点,,,则过B点的中线长为______.16.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知等差数列前n项和为,,,若对任意的正整数n成立,求实数的取值范围.19.(12分)2021年2月12日,辛丑牛年大年初一,由贾玲导演的电影《你好,李焕英》上映,截至到2月21日22点8分,票房攀升至40.25亿,反超同期上映的《唐人街探案3》,迎来了2021春节档最具戏剧性的一幕.正是因为影片中母女间的这份简单、纯粹、诚挚的情感触碰了人们内心柔软的地方,打动了万千观众,才赢得了良好的口碑,不少观众都流下了感动的泪水.影片结束后,某电影院工作人员当日随机抽查了100名观看《你好,焕英》的观众,询问他们在观看影片的过程中是否“流泪”,得到以下表格:男性观众女性观众合计流泪20没有流泪520合计(1)完成表格中的数据,并判断是否有99.9%的把握认为观众在观看影片的过程中流泪与性别有关?(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,然后从这5人中再随机抽取2人,求这2人都流泪的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,20.(12分)已知数列是公比为2的等比数列,是与的等差中项(1)求数列的通项公式;(2)若,求数列的前n项和21.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知函数(1)求在点处的切线方程(2)求直线与曲线围成的封闭图形的面积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【点睛】本题考查了抛物线的定义应用,意在考查学生的计算能力.2、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.3、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C4、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A5、B【解析】利用空间向量的加减法、数乘运算推导即可.【详解】.故选:B.6、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B7、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.8、C【解析】根据题意,先求得的值,代入离心率公式,即可得答案.【详解】因为,所以所以,解得.故选:C9、B【解析】首先求出函数的导函数,依题意可得,即可求出参数的值,从而得到函数解析式,再根据导函数得到函数单调性,即可求出函数的极值点,从而求出函数的极大值;【详解】解:因为,所以,依题意可得,即,解得,所以定义域为,且,令,解得或,令解得,即在和上单调递增,在上单调递减,即在处取得极大值,在处取得极小值,所以;故选:B10、C【解析】根据,,可以得到,从而得到与的关系式,再由,,的关系,进而可求双曲线的渐近线方程【详解】解:由,,则是圆的切线,,,,所以,因为双曲线的渐近线方程为,即为故选:C11、C【解析】利用等差数列性质可求得,由可求得结果.【详解】由等差数列性质知:,,解得:;又,.故选:C.12、C【解析】化简复数得,由其为纯虚数求参数a,进而求的模即可.【详解】由为纯虚数,∴,解得:,则,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)14、【解析】先求出直线的斜率取值范围,再根据斜率与倾斜角的关系,即可求出【详解】可化为:,所以,由于,结合函数在上的图象,可知故答案为:【点睛】本题主要考查斜率与倾斜角的关系的应用,以及直线的一般式化斜截式,属于基础题15、【解析】先求出中点坐标,再由距离公式得出过B点的中线长.【详解】由中点坐标公式可得中点,则过B点的中线长为.故答案为:16、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.18、【解析】设等差数列的公差为,根据题意得,解方程得,,进而得,故恒成立,再结合二次函数的性质得当或4时,取得最小值,进而得答案.【详解】解:设等差数列的公差为,由已知,.联立方程组,解得,.所以,,由题意,即.令,其图象为开口向上的抛物线,对称轴为,所以当或4时,取得最小值,所以实数的取值范围是.19、(1)填表见解析;有99.9%的把握认为观众在观看影片的过程中流泪与性别有关;(2)【解析】(1)由已知数据可完善列联表,然后计算可得结论;(2)根据分层抽样定义求出5人中流泪与没有流泪的观众人数并编号,用列举法写出作任取2人的所有基本事件,并得出2人都流泪的基本事件,计数后可计算概率【详解】解:(1)男性观众女性观众合计流泪206080没有流泪15520合计3565100所以有99.9%的把握认为观众在观看影片的过程中流泪与性别有关(2)以分层抽样的方式,从流泪与没有流泪的观众中抽取5人,则流泪的观众抽到人,记为,,,,没有流泪的观众抽到人,记为从这5人中抽2人有10种情况,分别是,,,,,,,,,其中这2人都流泪有6种情况,分别是,,,,,所以所求概率20、(1);(2).【解析】(1)根据给定条件列式求出数列的首项即可作答.(2)由(1)的结论求出,再借助裂项相消法计算作答.【小问1详解】因为数列是公比为2的等比数列,且是与的等差中项,则有,即,解得,所以.【小问2详解】由(1)知,,则,即有,所以.21、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论