黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题含解析_第1页
黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题含解析_第2页
黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题含解析_第3页
黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题含解析_第4页
黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市宾县一中2026届高一上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,其函数图象的一个对称中心是,则该函数的一个单调递减区间是()A. B.C. D.2.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.3.已知函数,则下列说法不正确的是A.的最小正周期是 B.在上单调递增C.是奇函数 D.的对称中心是4.下列函数中,既是偶函数,又在区间上是增函数的是()A. B.C. D.5.已知空间直角坐标系中,点关于轴的对称点为,则点的坐标为A. B.C. D.6.已知点,向量,若,则点的坐标为()A. B.C. D.7.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有8.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]9.若集合,则A. B.C. D.10.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围12.在空间直角坐标系中,点关于平面的对称点是B,点和点的中点是E,则___________.13.在三棱锥中,,,两两垂直,,,三棱锥的侧面积为13,则该三棱锥外接球的表面积为______.14.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限15.关于函数有下述四个结论:①是偶函数②在区间单调递增③的最大值为1④在有4个零点其中所有正确结论的编号是______.16.已知,,则的最小值是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且,,求的值18.已知全集,函数的定义域为集合,集合(1)若求:(2)设;.若是的充分不必要条件,求实数的取值范围.19.已知函数f(x)的图像关于原点对称,当时,.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间.20.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分的平均数和方差;(2)从甲比赛得分在20分以下6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过平均数的概率21.已知集合,(1)当时,求集合;(2)若,“”是“”的充分条件,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由正切函数的对称中心得,得到,令可解得函数的单调递减区间.【详解】因为是函数的对称中心,所以,解得因为,所以,,令,解得,当时,函数的一个单调递减区间是故选:D【点睛】本题考查正切函数的图像与性质,属于基础题.2、C【解析】代入后根据诱导公式即可求出答案【详解】解:由题,∴,∴,故选:C【点睛】本题主要考查三角函数的诱导公式的应用,属于基础题3、A【解析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案.【详解】,最小正周期为;单调增区间为,即,故时,在上单调递增;定义域关于原点对称,,故为奇函数;对称中心横坐标为,即,所以对称中心为【点睛】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题.4、B【解析】先判断定义域是否关于原点对称,再将代入判断奇偶性,进而根据函数的性质判断单调性即可【详解】对于选项A,定义域为,,故是奇函数,故A不符合条件;对于选项B,定义域为,,故是偶函数,当时,,由指数函数的性质可知,在上是增函数,故B正确;对于选项C,定义域为,,故是偶函数,当时,,由对数函数的性质可知,在上是增函数,则在上是减函数,故C不符合条件;对于选项D,定义域为,,故是奇函数,故D不符合条件,故选:B【点睛】本题考查判断函数的奇偶性和单调性,熟练掌握函数的性质是解题关键5、C【解析】∵在空间直角坐标系中,点(x,y,z)关于z轴的对称点的坐标为:(﹣x,﹣y,z),∴点关于z轴的对称点的坐标为:故选:C6、B【解析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.7、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B8、B【解析】按照分段函数先求出,由和解出的取值范围即可.【详解】,则,∵,解得,又故选:B.9、D【解析】详解】集合,所以.故选D.10、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.12、【解析】先利用对称性求得点B坐标,再利用中点坐标公式求得点E坐标,然后利用两点间距离公式求解.【详解】因为点关于平面的对称点是,点和点的中点是,所以,故答案为:13、【解析】根据侧面积计算得到,再计算半径为,代入表面积公式得到答案.【详解】三棱锥的侧面积为,所以故该三棱锥外接球的半径为:,球的表面积为.故答案为:【点睛】本题考查了三棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.14、二【解析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号15、①③【解析】利用奇偶性定义可判断①;时,可判断②;分、时求出可判断故③;时,由可判断④.【详解】因为,,所以①正确;当时,,当时,,,时,单调递减,故②错误;当时,,;当时,,综上的最大值为1,故③正确;时,由得,解得,由不存在零点,所以在有2个零点,故④错误.故答案为:①③.16、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】先利用同角三角函数关系式分别求出sinα、cosβ,再由两角差余弦函数公式能求出β﹣α的值【详解】因为,,所以又,,所以,所以,所以【点睛】本题考查两角差的求法,是中档题,解题时要认真审题,注意同角三角函数关系式和两角差余弦函数公式的合理运用18、(1);(2)或.【解析】(1)分别求解集合,再求补集和交集即可;(2)由,根据条件得是的真子集,进而得或.【详解】(1)由得,解得,所以,当时,,所以.(2),因为是的充分不必要条件,所以是的真子集,所以或,解得或19、(1)(2)单调递减区间为,单调递增区间为【解析】(1)根据奇函数定义结合已知可得;(2)先求时的单调区间,然后由对称性可得.【小问1详解】∵函数f(x)的图像关于原点对称.∴.当时,,又时,,∴当时,.∴【小问2详解】当时,函数的图像开口向下,对称轴为直线,∴函数f(x)在[0,3]上单调递增,在[3,+∞)上单调递减.又∵函数f(x)的图像关于原点对称,∴函数f(x)的单调递减区间为;单调递增区间为.20、(1)15,3225;(2).【解析】(1)将数据代入公式,即可求得平均数和方差.(2)6场比赛中得分不超过平均数的有4场,可记为,超过平均数的有2场,可记为,分别求得6场比赛中抽出2场,总事件及满足题意的事件,根据古典概型概率公式,即可得答案.【详解】解:(1)平均数方差(2)由题意得,6场比赛中得分不超过平均数的有4场,可记为超过平均数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论