河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省九师联盟商开大联考2026届高二数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,且,则()A.2 B.3C.5 D.82.国际冬奥会和残奥会两个奥运会将于2022年在北京召开,这是我国在2008年成功举办夏季奥运会之后的又一奥运盛事.某电视台计划在奥运会期间某段时间连续播放5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能相邻播放,则不同的播放方式有()A.120种 B.48种C.36种 D.18种3.直线的倾斜角为()A. B.C. D.4.已知三棱柱中,,,D点是线段上靠近A的一个三等分点,则()A. B.C. D.5.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m6.设变量,满足约束条件,则的最大值为()A.1 B.6C.10 D.137.若曲线与曲线在公共点处有公共切线,则实数()A. B.C. D.8.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.如图所示的圆形剪纸中,正六边形的所有顶点都在该圆上,若在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率为()A. B.C. D.9.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.10.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离11.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件12.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列的前项和为,则_________________.14.设,向量,,,且,,则___________.15.在数列中,,且,则_______.16.已知数列满足,,则使得成立的n的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设AB是过抛物线焦点F的弦,若,,求证:(1);(2)(为弦AB的倾斜角)18.(12分)已知双曲线C:(a>0,b>0)的离心率为,且双曲线的实轴长为2(1)求双曲线C的方程;(2)已知直线x-y+m=0与双曲线C交于不同的两点A、B,且线段AB中点在圆x2+y2=17上,求m的值19.(12分)已知圆C经过点,,且它的圆心C在直线上.(1)求圆C的方程;(2)过点作圆C的两条切线,切点分别为M,N,求三角形PMN的面积.20.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.21.(12分)已知函数,(1)求曲线在点处的切线方程;(2)若对任意的,恒成立,求实数的取值范围22.(10分)已知是公差不为零等差数列,,且、、成等比数列(1)求数列的通项公式:(2)设.数列{}的前项和为,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】使用递推公式逐个求解,直到求出即可.【详解】因为所以,,,.故选:D2、C【解析】先考虑最后位置必为奥运宣传广告,再将另一奥运广告插入3个商业广告之间,最后对三个商业广告全排列,即可求解.【详解】先考虑最后位置必为奥运宣传广告,有种,另一奥运广告插入3个商业广告之间,有种;再考虑3个商业广告的顺序,有种,故共有种.故选:C.3、D【解析】由直线斜率概念可写出倾斜角的正切值,进而可求出倾斜角.【详解】因为直线的斜率为,所以倾斜角.故选D【点睛】本题主要考查直线的倾斜角,由斜率的概念,即可求出结果.4、A【解析】在三棱柱中,,转化为结合已知条件计算即可.【详解】在三棱柱中,满足,且,则,,D点是线段上靠近A的一个三等分点,则,由向量的减法运算得,.故选:A【点睛】关键点点睛:在三棱柱中,,由向量的减法运算得,再展开利用数量积运算.5、C【解析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.6、C【解析】画出约束条件表示的平面区域,将变形为,可得需要截距最小,观察图象,可得过点时截距最小,求出点A坐标,代入目标式即可.【详解】解:画出约束条件表示的平面区域如图中阴影部分:又,即,要取最大值,则在轴上截距要最小,观察图象可得过点时截距最小,由,得,则.故选:C.7、A【解析】设公共点为,根据导数的几何意义可得出关于、的方程组,即可解得实数、的值.【详解】设公共点为,的导数为,曲线在处的切线斜率,的导数为,曲线在处的切线斜率,因为两曲线在公共点处有公共切线,所以,且,,所以,即解得,所以,解得,故选:A8、D【解析】设圆的半径,求出圆的面积与正六边形的面积,再根据几何概型的概率公式计算可得;【详解】解:设圆的半径,则,则,所以,所以在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率;故选:D9、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题10、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.11、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D12、A【解析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用计算可得出数列的通项公式.【详解】当时,;而不适合上式,.故答案:.14、3【解析】利用向量平行和向量垂直的性质列出方程组,求出,,再由空间向量坐标运算法则求出,由此能求出【详解】解:设,,向量,,,且,,,解得,,所以,,,故答案为:15、##【解析】根据数列的递推公式,发现规律,即数列为周期数列,然后求出即可【详解】根据题意可得:,,,故数列为周期数列可得:故答案为:16、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】(1)设直线的方程为,代入,再利用韦达定理,即可得到结论;(2)由抛物线的定义,结合余弦函数的定义,即可得到的长,同理可得的长,两式相乘即可证明;【小问1详解】证明:由题意设直线的方程为,代入,可得,所以;【小问2详解】证明:如图,不妨设弦AB的倾斜角为锐角,作垂直于抛物线准线,垂足为M,N,由抛物线的定义可得,所以,同理可得,,所以,当为直角或钝角时,同理可证明,故.18、(1);(2)【解析】(1)由实轴长求得,再由离心率得,从而求得得双曲线方程;(2)直线方程与双曲线方程联立方程组,消元后应用韦达定理求得中点坐标,代入圆方程可求得值【小问1详解】由已知,,又,所以,,所以双曲线方程为;【小问2详解】由,得,恒成立,设,,中点为,所以,,,又在圆x2+y2=17上,所以,19、(1);(2).【解析】(1)由题设知,设圆心,应用两点距离公式列方程求参数a,进而确定圆心坐标、半径,写出圆C的方程;(2)利用两点距离公式、切线的性质可得、,再应用三角形面积公式求三角形PMN的面积.【小问1详解】由已知,可设圆心,且,从而有,解得.所以圆心,半径.所以,圆C的方程为.【小问2详解】连接PC,CM,CN,MN,由(1)知:圆心,半径.所以.又PM,PN是圆C的切线,所以,,则,,所以,所以.20、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,所以轨迹的方程为;【小问2详解】设,,线段的中点为.∵在直线上,∴,∵A,在轨迹上,∴两式相减,可得,∴,即直线的斜率为,依题意,可设直线的方程为,由可得,则解得且由韦达定理,得,∴∵原点到直线的距离为∴,当且仅当,即时等号成立,即时,三角形的面积最大,此时直线的方程为.21、(1);(2).【解析】(1)求出函数的导数,计算,,求出切线方程即可;(2)问题转化为,利用导函数求出的最大值,求出的范围即可.【小问1详解】因为,所以,则切线的斜率为,又因为,则切点为,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论