版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山许昌济源2026届数学高一上期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.2.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.3.已知函数f(x)=a+log2(x2+a)(a>0)的最小值为8,则实数a的取值属于以下哪个范围()A.(5,6) B.(7,8)C.(8,9) D.(9,10)4.已知,则的值为()A.3 B.6C.9 D.5.已知向量,,则下列结论正确的是()A.// B.C. D.6.设命题p:,命题q:,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.某学校大门口有一座钟楼,每到夜晚灯光亮起都是一道靓丽的风景,有一天因停电导致钟表慢10分钟,则将钟表拨快到准确时间分针所转过的弧度数是()A. B.C. D.8.函数的零点所在的一个区间是A. B.C. D.9.若,则下列关系式一定成立的是()A. B.C. D.10.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若互不相等的实数、、满足,则的取值范围是_________12.已知为角终边上一点,且,则______13.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.14.在中,边上的中垂线分别交于点若,则_______15.已知函数是偶函数,则实数的值是__________16.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进的新丸体积为a,经过t天后体积V与天数t的关系式为:.已知新丸经过50天后,体积变为.若一个新丸体积变为,则需经过的天数为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值18.直线与直线平行,且与坐标轴构成的三角形面积是24,求直线的方程.19.甲乙两人用两颗质地均匀的骰子(各面依次标有数字1、2、3、4、5、6的正方体)做游戏,规则如下:若掷出的两颗骰子点数之和为3的倍数,则由原投掷人继续投掷,否则由对方接着投掷.第一次由甲投掷(1)求第二次仍由甲投掷的概率;(2)求游戏前4次中乙投掷的次数为2的概率20.(1)若正数a,b满足,求的最小值,并求出对应的a,b的值;(2)若正数x,y满足,求的取值范围21.已知函数()求函数的最小正周期()求函数的单调递减区间
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.2、C【解析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.3、A【解析】根复合函数的单调性,得到函数f(x)的单调性,求解函数的最小值f(x)min=8,构造新函数g(a)=a+log2a-8,利用零点的存在定理,即可求解.【详解】由题意,根复合函数的单调性,可得函数f(x)在[0,+∞)上是增函数,在(-∞,0)上递减,所以函数f(x)的最小值f(x)min=f(0)=a+log2a=8,令g(a)=a+log2a-8,a>0,则g(5)=log25-3<0,g(6)=log26-2>0,又g(a)在(0,+∞)上是增函数,所以实数a所在的区间为(5,6)【点睛】本题主要考查了函数的单调性的应用,以及零点的存在定理的应用,其中解答中根据复合函数的单调性,求得函数的最小值,构造新函数,利用零点的存在定理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4、A【解析】直接由对数与指数的互化公式求解即可【详解】解:由,得,故选:A5、B【解析】采用排除法,根据向量平行,垂直以及模的坐标运算,可得结果【详解】因为,所以A不成立;由题意得:,所以,所以B成立;由题意得:,所以,所以C不成立;因为,,所以,所以D不成立.故选:B.【点睛】本题主要考查向量的坐标运算,属基础题.6、B【解析】先解不等式,然后根据充分条件和必要条件的定义判断【详解】由,得,所以命题p:,由,得,所以命题q:,因为当时,不一定成立,当时,一定成立,所以p是q成立的必要不充分条件,故选:B7、A【解析】由题可得分针需要顺时针方向旋转.【详解】分针需要顺时针方向旋转,即弧度数为.故选:A.8、B【解析】根据函数的解析式,求得,结合零点的存在定理,即可求解,得到答案.【详解】由题意,函数,可得,即,根据零点的存在定理,可得函数的零点所在的一个区间是.故选:B.【点睛】本题主要考查了函数的零点问题,其中解答中熟记函数零点的存在定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】判断函数的奇偶性以及单调性,由此可判断函数值的大小,即得答案.【详解】由可知:,为偶函数,又,知在上单调递减,在上单调递增,故,故选:A.10、A【解析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作出函数的图象,设,求出的取值范围以及的值,由此可求得的取值范围.【详解】作出函数的图象,设,如下图所示:二次函数的图象关于直线对称,则,由图可得,可得,解得,所以,.故答案为:.【点睛】关键点点睛:本题考查零点有关代数式的取值范围的求解,解题的关键在于利用利用图象结合对称性以及对数运算得出零点相关的等式与不等式,进而求解.12、##【解析】利用三角函数定义可得:,即可求得:,再利用角的正弦、余弦定义计算得解【详解】由三角函数定义可得:,解得:,则,所以,,.故答案为:.13、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.14、4【解析】设,则,,又,即,故答案为.15、1【解析】函数是偶函数,,即,解得,故答案为.【方法点睛】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性16、75【解析】由题意,先算出,由此可算出一个新丸体积变为需经过的天数.【详解】由已知,得,∴设经过天后,一个新丸体积变为,则,∴,∴,故答案为:75.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,y有最小值为3.【解析】(1)根据y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和即可建立函数模型;(2)利用均值不等式即可求解.【小问1详解】解:由题意,y关于x的函数表达式为;【小问2详解】解:因为,当且仅当,即时等号成立.所以当时,y有最小值为3.18、【解析】设直线,则将直线与两坐标轴的交点坐标,代入三角形的面积公式进行运算,求出参数,即可得到答案.【详解】设直线,分别与轴、轴交于两点,则,,那么.所以直线的方程是【点睛】本题考查用待定系数法求直线的方程,两直线平行的性质,以及利用直线的截距求三角形的面积.19、(1)(2)【解析】(1)由题意利用古典概型求概率的计算公式求得结果(2)游戏的前4次中乙投掷的次数为2,包含3种情况,根据独立事件的乘法公式及互斥事件的加法公式,可计算结果【小问1详解】求第二次仍由甲投,说明第一次掷出的点数之和为3的倍数,所有的情况共有种,其中,掷出的点数之和为3的倍数的情况有、、、、、,、、、、、,共计12种情况,故第二次仍由甲投掷的概率为【小问2详解】由(1)可得掷出的两颗骰子点数之和为3的倍数的概率为,所以两颗骰子点数之和不为3的倍数的概率为,游戏的前4次中乙投掷的次数为2,可能乙投掷的次数为第二次第三次,则概率为,或第二次第四次,则概率为,或第三次第四次,则概率为,以上三个事件互斥,所以其概率为.20、(1)当且仅当时,取得最小值为18;(2)【解析】(1)化简得,再利用基本不等式求最值;(2)由题得,再解一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省宿州市2025-2026学年九年级上学期1月期末数学试题(无答案)
- 养老院九防制度
- 企业员工培训与技能提升目标制度
- 含油钻屑处理技术
- 城市轨道交通行车值班员安全知识竞赛水平考核试卷含答案
- 化工吸附工冲突管理知识考核试卷含答案
- 中高频炉工达标水平考核试卷含答案
- 我国上市公司治理结构对融资方式的影响:理论、实证与优化策略
- 酶制剂制造工安全文明考核试卷含答案
- 营养指导员保密意识评优考核试卷含答案
- 2026年乡村医生传染病考试题含答案
- DB32-T 4733-2024 数字孪生水网建设总体技术指南
- AQ-T7009-2013 机械制造企业安全生产标准化规范
- 小学美术与心理健康的融合渗透
- 图书馆室内装修投标方案(技术标)
- 储罐组装施工措施方案(拱顶液压顶升)-通用模版
- 2023年上海铁路局人员招聘笔试题库含答案解析
- 质量源于设计课件
- 2023届高考语文复习-散文专题训练-题目如何统摄全文(含答案)
- 马鞍山经济技术开发区建设投资有限公司马鞍山城镇南部污水处理厂扩建工程项目环境影响报告书
- GB/T 615-2006化学试剂沸程测定通用方法
评论
0/150
提交评论