版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东泰安肥城市2026届数学高一上期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线和互相平行,则实数等于()A.或3 B.C. D.1或2.设m、n是两条不同的直线,、是两个不同的平面,有下列四个命题:如果,,那么;如果,,那么;如果,,,那么;如果,,,那么其中错误的命题是A. B.C. D.3.过点的直线在两坐标轴上的截距之和为零,则该直线方程为()A. B.C.或 D.或4.函数,的最小值是()A. B.C. D.5.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.6.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π7.计算器是如何计算,,,,等函数值的?计算器使用的是数值计算法,其中一种方法是用容易计算的多项式近似地表示这些函数,通过计算多项式的值求出原函数的值,如,,,其中.英国数学家泰勒(B.Taylor,1685-1731)发现了这些公式,可以看出,右边的项用得越多,计算得出的和的值也就越精确.运用上述思想,可得到的近似值为()A.0.50 B.0.52C.0.54 D.0.568.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.9.两圆和的位置关系是A.相离 B.相交C.内切 D.外切10.函数的值域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为_____________12.圆的半径是,弧度数为3的圆心角所对扇形的面积等于___________13.方程的解为__________14.已知,,则ab=_____________.15.已知函数的零点依次为a,b,c,则=________16.若、是关于x的方程的两个根,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=Asin(ωx+)
(x∈R,A>0,ω>0,||<)的部分图象如图所示,(Ⅰ)试确定f(x)的解析式;(Ⅱ)若=,求cos(-α)的值18.已知函数,且.(1)求实数a的值;(2)判断函数在上的单调性,并证明.19.在①两个相邻对称中心的距离为,②两条相邻对称轴的距离为,③两个相邻最高点的距离为,这三个条件中任选一个,补充在下面问题中,并对其求解问题:函数的图象过点,且满足__________.当时,,求的值.注:如果选择多个条件分别解答,按第一个解答计分20.计算(1);(2).21.设函数.(1)求的最小正周期和最大值;(2)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由两直线平行,得到,求出,再验证,即可得出结果.详解】∵两条直线和互相平行,∴,解得或,若,则与平行,满足题意;若,则与平行,满足题意;故选:A2、B【解析】根据空间直线与直线,直线与平面的位置关系及几何特征,逐一分析四个命题的真假,可得答案【详解】①如果α∥β,m⊂α,那么m∥β,故正确;②如果m⊥α,β⊥α,那么m∥β,或m⊂β,故错误;③如果m⊥n,m⊥α,n∥β,那么α,β关系不能确定,故错误;④如果m∥β,m⊂α,α∩β=n,那么m∥n,故正确故答案为B【点睛】本题以命题的真假判断与应用为载体考查了空间直线与直线,直线与平面的位置关系及几何特征等知识点3、D【解析】分截距为零和不为零两种情况讨论即可﹒【详解】当直线过原点时,满足题意,方程为,即2x-y=0;当直线不过原点时,设方程为,∵直线过(1,2),∴,∴,∴方程,故选:D﹒4、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.5、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题6、C【解析】由题意,结合图象可得该几何体是圆锥和半球体的组合体,根据图中的数据即可计算出组合体的体积选出正确选项.由图知,该几何体是圆锥和半球体的组合体,球的半径是3,圆锥底面圆的半径是3,圆锥母线长为5,由圆锥的几何特征可求得圆锥的高为4,则它的体积.考点:由三视图求面积、体积7、C【解析】根据新定义,直接计算取近似值即可.【详解】由题意,故选:C8、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.9、B【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.10、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令解得答案即可.【详解】令.故答案为:.12、【解析】根据扇形的面积公式,计算即可.【详解】由扇形面积公式知,.【点睛】本题主要考查了扇形的面积公式,属于容易题.13、【解析】令,则解得:或即,∴故答案为14、1【解析】将化成对数形式,再根据对数换底公式可求ab的值.【详解】,.故答案为:1.15、【解析】根据对称性得出,再由得出答案.【详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:16、【解析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(Ⅰ)由图象可知A=2,=-=,∴T=2,ω==π将点(,2)代入y=2sin(πx),得sin()=1,又||<所以=.故所求解析式为f(x)=2sin(πx+)(x∈R)(Ⅱ)∵f()=,∴2sin(+)=,即,sin(+)=∴cos(-a)=cos[π-2(+)]=-cos2(+)=2sin2(+)-1=考点:由y=Asin(ωx+φ)的部分图象确定其解析式点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,突出考查特值法与排除法的综合应用,考查分析与计算的能力,属于中档题18、(1)(2)增函数,证明见解析【解析】(1)根据,由求解;(2)利用单调性的定义证明.【小问1详解】解:∵,且,∴,∴;【小问2详解】函数在上是增函数.任取,不妨设,则,,∵且,∴,,,∴,即,∴在上是增函数.19、选①②③,答案相同,均为【解析】选①②可以得到最小正周期,从而得到,结合图象过的点,可求出,从而得到,进而得到,接下来用凑角法求出的值;选③,可以直接得到最小正周期,接下来过程与选①②相同.【详解】选①②:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;选③:由题意得:的最小正周期,则,结合,解得:,因为图象过点,所以,因为,所以,所以,因为,所以,因为,所以,所以,;20、(1)2(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- CCAA - 2017年12月环境管理体系基础答案及解析 - 详解版(80题)
- CCAA - 2015服务标准化与服务认证答案及解析 - 详解版(77题)
- 企业员工培训与技能发展路径目标制度
- 人教版(2026)八年级下册英语寒假预习讲义(含练习题及答案)
- 老年终末期认知障碍非药物干预策略
- 老年终末期患者跌倒预防的循证护理方案
- T∕SMA 0081-2025 船舶油水计量系统测试方法
- 2025年长沙浏阳市人民医院招聘笔试真题
- 贵金属回收提纯工安全素养测试考核试卷含答案
- 卫星通信机务员操作水平竞赛考核试卷含答案
- CJ/T 164-2014节水型生活用水器具
- 购销合同范本(塘渣)8篇
- 货车充电协议书范本
- 屋面光伏设计合同协议
- 生鲜业务采购合同协议
- 夫妻门卫合同协议
- 公司双选工作方案
- GB/T 4340.2-2025金属材料维氏硬度试验第2部分:硬度计的检验与校准
- 销售合同评审管理制度
- 泳池突发安全事故应急预案
- 村财务管理制度
评论
0/150
提交评论